首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triosephosphate isomerase: a highly evolved biocatalyst   总被引:1,自引:0,他引:1  
Triosephosphate isomerase (TIM) is a perfectly evolved enzyme which very fast interconverts dihydroxyacetone phosphate and d-glyceraldehyde-3-phosphate. Its catalytic site is at the dimer interface, but the four catalytic residues, Asn11, Lys13, His95 and Glu167, are from the same subunit. Glu167 is the catalytic base. An important feature of the TIM active site is the concerted closure of loop-6 and loop-7 on ligand binding, shielding the catalytic site from bulk solvent. The buried active site stabilises the enediolate intermediate. The catalytic residue Glu167 is at the beginning of loop-6. On closure of loop-6, the Glu167 carboxylate moiety moves approximately 2 Å to the substrate. The dynamic properties of the Glu167 side chain in the enzyme substrate complex are a key feature of the proton shuttling mechanism. Two proton shuttling mechanisms, the classical and the criss-cross mechanism, are responsible for the interconversion of the substrates of this enolising enzyme.  相似文献   

2.
Meizothrombin is the physiologically active intermediate generated by a single cleavage of prothrombin at R320 to separate the A and B chains. Recent evidence has suggested that meizothrombin, like thrombin, is a Na(+)-activated enzyme. In this study we present the first X-ray crystal structure of human meizothrombin desF1 solved in the presence of the active site inhibitor PPACK at 2.1 A resolution. The structure reveals a Na(+) binding site whose architecture is practically identical to that of human thrombin. Stopped-flow measurements of Na(+) binding to meizothrombin desF1 document a slow phase of fluorescence change with a k(obs) decreasing hyperbolically with increasing [Na(+)], consistent with the existence of three conformations in equilibrium, E*, E and E:Na(+), as for human thrombin. Evidence that meizothrombin exists in multiple conformations provides valuable new information for studies of the mechanism of prothrombin activation.  相似文献   

3.
Summary Butanedione in borate buffer irreversibly inactivates L-amino acid oxidase. L-Phenylalanine and L-methionine, which are good substrates for the enzyme, protect against inactivation but glycine, which is a very poor substrate, and D-phenylalanine, which is neither substrate nor inhibitor, do not provide significant protection. These results are consistent with the modification by butanedione of one or more arginine residues located in or near the catalytic site of L-amino acid oxidase. Acknowledgments. We thank Drs D. Porter and S. Johnson for advice and assistance; Ms D. Hurt for electrophoretic analyses of protein samples; NIH for grant No. AM-25247, and NSF for grant No. SP176-83182.  相似文献   

4.
Computation plays an important role in functional genomics. THEMATICS is a computational method that predicts chemical and electrostatic properties of residues in enzymes and utilizes information contained in those predictions to identify active sites. The only input required is the three-dimensional structure of the query protein. The identification of residues involved in catalysis and in recognition is discussed. The two serine proteases Kex2 from Saccharomyces cerevisiae and subtilisin from Bacillus subtilis are used as examples to illustrate how the method finds the catalytic residues for both enzymes. In addition, Kex2 is specific for dibasic sites and THEMATICS finds the recognition residues for both the S1 and S2 sites of Kex2. In contrast, no such recognition sites are found for the non-specific enzyme subtilisin. The ability to identify sites that govern recognition opens the door to better understanding of specificity and to the design of highly specific inhibitors.Received 22 July 2003; received after revision 16 September 2003; accepted 20 October 2003  相似文献   

5.
6.
Like all other complex biological systems, proteins exhibit properties not seen in free amino acids (i.e., emergent properties). The present investigation arose from the deduction that proteins should offer a good model to approach the reverse phenomenon, namely top-down constraints experienced by protein residues compared to free amino acids. The crystalline structure of profilin Ib, a contractile protein of Acanthamoeba castellanii, was chosen as the object of study and submitted to 2-ns molecular dynamics simulation. The results revealed strong conformational constraints on the side chain of residues compared to the respective free amino acids. A Shannon entropy (SE) analysis of the conformational behavior of the side chains showed in most cases a strong decrease in the SE of the 1 and 2 dihedral angles compared to free amino acids. This is equivalent to stating that conformational constraints on the side chain of residues increase their information content and hence recognition specificity compared to free amino acids. In other words, the vastly increased information content of a protein relative to its free monomers is embedded not only in the tertiary structure of the backbone, but also in the conformational behavior of the side chains. The postulated implication is that both backbone and side chains, by virtue of being conformationally constrained, contribute to the recognition specificity of the protein toward other macromolecules and ligands.Received 13 July 2003; received after revision 18 August 2003; accepted 4 September 2003  相似文献   

7.
The (Na+ 4 K+)- and Mg2+-dependent ATPase distribution in several brain areas has been investigated in Quaking mutant mice characterized by myelin deficiency. A marked decrease of (Na+ + K+)-ATPase activity has been found in limbic structures, hypothalamus and cerebellum. The Mg2+-dependent activity did not change. A possible involvement of the impairment of the (Na+ + K+)-ATPase activity in the seizure susceptibility of this mice is discussed.  相似文献   

8.
The PREPL (previously called KIAA0436) gene encodes a putative serine peptidase from the prolyl oligopeptidase family. A chromosomal deletion involving the PREPL gene leads to a severe syndrome with multiple symptoms. Homology with oligopeptidase B suggested that the enzyme cleaves after an arginine or lysine residue. Several PREPL splice variants have been identified, and a 638-residue variant (PREPL A) was expressed in Escherichia coli and purified. Its secondary structure was similar to that of oligopeptidase B, but differential-scanning calorimetry indicated a higher conformational stability. Dimerization may account for the enhanced stability. Unexpectedly, the PREPL A protein did not cleave peptide substrates containing a P1 basic residue, but did slowly hydrolyse an activated ester substrate, and reacted with diisopropyl fluorophosphate. These results indicated that the catalytic serine is a reactive residue. However, the negligible hydrolytic activity suggests that the function of PREPL A is different from that of the other members of the prolyl oligopeptidase family.  相似文献   

9.
The behaviour of cariogenic Bacteria (Streptococcus mutans) is studied with regard to collagen, which represents 90% of the dentine organic matrix. Collagenase activity of cariogenic Bacteria is measured with radioactive precursors and gel electrophoresis and compared to reference bacterial collagenase (Clostridium histolyticum). Labelled collagen substrate has been prepared with two different methods: extraction by 0,5 M acetic acid from young Rat skin, previously labelled with L-proline 14C, or reduction by Na B3H4. Both collagen sutstrates have been incubated for 2 h in Terleckyj medium in which the Streptococcus mutans have been inoculated. The experiments show a proteolytic activity of Streptococcus Mutans on the collagen substrate.  相似文献   

10.
Increased resistance to β-lactam antibiotics is mainly due to β-lactamases. X-ray structures of zinc β-lactamases unraveled the coordination of the metal ions, but their mode of action remains unclear. Recently, enzymes in which one of the zinc ligands was mutated have been characterized and their catalytic activity against several β-lactam antibiotics measured. A molecular modeling study of these enzymes was performed here to explain the catalytic activity of the mutants. Coordination around the zinc ions influences the way the tetrahedral intermediate is bound; any modification influences the first recognition of the substrate by the enzyme. For all the studied mutants, at least one of the interactions fails, inducing a loss of catalytic efficiency compared to the wild type. The present studies show that the enzyme cavity is a structure of high plasticity both structurally and mechanistically and that local modifications may propagate its effects far from the mutated amino acid. Received 28 August 2002; received after revision 22 October 2002; accepted 24 October 2002 RID="*" ID="*"Corresponding author.  相似文献   

11.
Acylphosphatase is one of the smallest enzymes known (about 98 amino acid residues). It is present in organs and tissues of vertebrate species as two isoenzymes sharing over 55% of sequence homology; these appear highly conserved in differing species. The two isoenzymes can be involved in a number of physiological processes, though their effective biological function is not still certain. The solution and crystal structures of different isoenzymes are known, revealing a close packed protein with a fold similar to that shown by other phosphate-bind ing proteins. The structural data, together with an extended site-directed mutagenesis investigation, led to the identification of the residues involved in enzyme catalysis. However, it appears unlikely that these residues are able to perform the full catalytic cycle: a substrate-assisted catalytic mechanism has therefore been proposed, in which the phosphate moiety of the substrate could act as a nucleophile activating the catalytic water molecule. Received 12 November 1996; accepted 27 November 1996  相似文献   

12.
Five types of zymogens of pepsins, gastric digestive proteinases, are known: pepsinogens A, B, and F, progastricsin, and prochymosin. The amino acid and/or nucleotide sequences of more than 50 pepsinogens other than pepsinogen B have been determined to date. Phylogenetic analyses based on these sequences indicate that progastricsin diverged first followed by prochymosin, and that pepsinogens A and F are most closely related. Tertiary structures, clarified by X-ray crystallography, are commonly bilobal with a large active-site cleft between the lobes. Two aspartates in the center of the cleft, Asp32 and Asp215, function as catalytic residues, and thus pepsinogens are classified as aspartic proteinases. Conversion of pepsinogens to pepsins proceeds autocatalytically at acidic pH by two different pathways, a one-step pathway to release the intact activation segment directly, and a stepwise pathway through a pseudopepsin(s). The active-site cleft is large enough to accommodate at least seven residues of a substrate, thus forming S4 through S3′ subsites. Hydrophobic and aromatic amino acids are preferred at the P1 and P1′ positions. Interactions at additional subsites are important in some cases, for example with cleavage of κ-casein by chymosin. Two potent naturally occurring inhibitors are known: pepstatin, a pentapeptide from Streptomyces, and a unique proteinous inhibitor from Ascaris. Pepsinogen genes comprise nine exons and may be multiple, especially for pepsinogen A. The latter and progastricsin predominate in adult animals, while pepsinogen F and prochymosin are the main forms in the fetus/infant. The switching of gene expression from fetal/infant to adult-type pepsinogens during postnatal development is noteworthy, being regulated by several factors, including steroid hormones. Received 25 May 2001; received after revision 27 August 2001; accepted 30 August 2001  相似文献   

13.
Zinc plays an important role in the structure and function of many enzymes, including alcohol dehydrogenases (ADHs) of the MDR type (mediumchain dehydrogenases/reductases). Active site zinc participates in catalytic events, and structural site zinc maintains structural stability. MDR-types of ADHs have both of these zinc sites but with some variation in ligands and spacing. The catalytic zinc sites involve three residues with different spacings from two separate protein segments, while the structural zinc sites involve four residues and cover a local segment of the protein chain (Cys97-Cys111 in horse liver class I ADH). This review summarizes properties of both ADH zinc sites, and relates them to zinc sites of proteins in general. In addition, it highlights a separate study of zinc binding peptide variants of the horse liver ADH structural zinc site. The results show that zinc coordination of the free peptide differs markedly from that of the enzyme (one His / three Cys versus four Cys), suggesting that the protein zinc site is in an energetically strained conformation relative to that of the peptide. This finding is a characteristic of an entatic state, implying a functional nature for this zinc site.  相似文献   

14.
Sodium channels in cardiac Purkinje cells   总被引:2,自引:0,他引:2  
Sodium (Na+) currents are responsible for excitation and conduction in most cardiac cells, but their study has been hampered by the lack of a satisfactory method for voltage clamp. We report a new method for low resistance access to single freshly isolated canine cardiac Purkinje cells that permits good control of voltage and intracellular ionic solutions. The series resistance was usually less than 3 omega cm2, similar to that of the squid giant axon. Cardiac Na+ currents resemble those of nerve. However, Na+ current decay is multiexponential. The basis for this was further studied with cell-attached patch clamp recording of single Na+ channel properties. A prominent characteristic of the single channels was their ability to reopen after closure. There was also a long opening state that may be the basis for a small very slowly decaying Na+ current. This rare long opening state may contribute to the Na+ current during the action potential plateau.  相似文献   

15.
Despite the absence of classical tyrosine kinases encrypted in the kinome of Plasmodium falciparum, biochemical analyses have detected significant tyrosine phosphorylation in its cell lysates. Supporting such phosphorylation is critical for parasite development. These observations have thus raised queries regarding the plasmodial enzymes accountable for tyrosine kinase activities in vivo. In the current investigation, immunoblot analysis intriguingly demonstrated that Pfnek3, a plasmodial mitogen-activated protein kinase kinase (MAPKK), displayed both serine/threonine and tyrosine kinase activities in autophosphorylation reactions as well as in phosphorylation of the exogenous myelin basic protein substrate. The results obtained strongly support Pfnek3 as a novel dual-specificity kinase of the malarial parasite, even though it displays a HGDLKSTN motif in the catalytic loop that resembles the consensus HRDLKxxN signature found in the serine/threonine kinases. Notably, its serine/threonine and tyrosine kinase activities were found to be distinctly influenced by Mg2+ and Mn2+ cofactors. Further probing into the regulatory mechanism of Pfnek3 also revealed tyrosine phosphorylation to be a crucial factor that stimulates its kinase activity. Through biocomputational analyses and functional assays, tyrosine residues Y117, Y122, Y172, and Y238 were proposed as phosphorylation sites essential for mediating the catalytic activities of Pfnek3. The discovery of Pfnek3’s dual role in phosphorylation marks its importance in closing the loop for cellular regulation in P. falciparum, which remains elusive to date.  相似文献   

16.
J Reichen  G Paumgartner 《Experientia》1979,35(9):1186-1188
Na +, K + -adenosinetriphosphatase (Na +, K + -ATPase) activity was decreased in liver plasma membranes from rats in which cholestasis had been induced by i.v. administration of sodium taurolithocholate (5 mumoles/100 g b. wt). Incubation of liver plasma membranes with taurolithocholate (10--1300 muM) caused significant and dose dependent reductions of Na +, K + -ATPase activity at taurolithocholate concentrations above 100 muM. These findings lend support to the hypothesis that cholestasis induced by monohydroxy bile acids is at least partially the result of an inhibition of hepatic Na +, K + -ATPase activity.  相似文献   

17.
18.
S Weidmann 《Experientia》1987,43(2):133-146
The time-course of the cardiac action potential can be accounted for in terms of ionic currents crossing the cell membranes. Depolarizing current is carried by Na+ or Ca2+ entering the cells, repolarizing current by K+ leaving the cells. Membrane permeability for the passive movement of these ions is thought to be voltage-dependent as well as time-dependent. Net transfer of charge may also result from active transport, 2 Na+ out against 1 K+ in; or coupled exchange, 3 or 4 Na+ in against 1 Ca2+ out. This review follows the path by which present-day knowledge has been reached. It also gives a few examples to illustrate that electrophysiology has provided concepts useful to clinical cardiology.  相似文献   

19.
In Escherichia coli protein quality control is carried out by a protein network, comprising chaperones and proteases. Central to this network are two protein families, the AAA+ and the Hsp70 family. The major Hsp70 chaperone, DnaK, efficiently prevents protein aggregation and supports the refolding of damaged proteins. In a special case, DnaK, together with the assistance of the AAA+ protein ClpB, can also refold aggregated proteins. Other Hsp70 systems have more specialized functions in the cell, for instance HscA appears to be involved in the assembly of Fe/S proteins. In contrast to ClpB, many AAA+ proteins associate with a peptidase to form proteolytic machines which remove irreversibly damaged proteins from the cellular pool. The AAA+ component of these proteolytic machines drives protein degradation. They are required not only for recognition of the substrate but also for substrate unfolding and translocation into the proteolytic chamber. In many cases, specific adaptor proteins modify the substrate binding properties of AAA+ proteins. While chaperones and proteases do not appear to directly cooperate with each other, both systems appear to be necessary for proper functioning of the cell and can, at least in part, substitute for one another. RID="*" ID="*"Corresponding author.  相似文献   

20.
The catalytic action of serine peptidases depends on the interplay of a nucleophile, a general base and an acid. In the classic trypsin and subtilisin families this catalytic triad is composed of serine, histidine and aspartic acid residues and exhibits similar spatial arrangements, but the order of the residues in the amino acid sequence is different. By now several new families have been discovered, in which the nucleophile-base-acid pattern is generally conserved, but the individual components can vary. The variations illustrate how different groups and different protein structures achieve the same reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号