共查询到18条相似文献,搜索用时 93 毫秒
1.
本文从圆弧齿轮的实际工况出发,根据润滑油沿椭圆接触区的主轴以β角进入接触区的Reynolds方程及其膜厚方程,分析计算了不同齿轮参数、不同工况的81型双圆弧齿轮和79型超短齿双圆弧齿轮传动的膜厚,得出了齿形、齿轮参数以及使用工况对圆弧齿轮传动膜厚的影响规律.在理论分析和实验的基础上,提出了圆弧齿轮传动的最小油膜厚度公式,该式可作为今后圆弧齿轮传动设计的一个基本校核公式。 相似文献
2.
通过对互相啮合的一对椭圆齿轮的综合曲率半径、卷吸速度、单位接触长度载荷的分析,给出了椭圆齿轮弹流润滑的实用计算公式以及节曲线平均最小膜厚公式。此式的计算结果可以作为判断椭圆齿轮润滑性能优劣的依据。 相似文献
3.
通过模拟滚动轴承的实际工况,得到一种锂基高速轴承润滑脂在不同工况下的弹流拖动系数,给出该脂拖动系数的数学模型,并对其流变特性进行分析,建立流变模型。结果表明:当载荷相同,速度由20 m/s增加到40 m/s时,拖动系数逐渐变小。当速度相同,载荷由20 N上升到135 N时,拖动系数增加至某一最大值之后减小。拖动力受润滑膜厚、滑滚比、平均极限剪切应力、接触圆半径和平均剪切模量的影响。润滑脂的平均极限剪切应力和速度呈显著的负相关关系,且和载荷呈正相关关系;润滑脂的平均剪切弹性模量与速度呈负相关关系。载荷超过转折载荷之前,润滑脂的平均剪切弹性模量与载荷呈正相关关系;载荷超过转折载荷之后,润滑脂的平均剪切弹性模量与载荷呈负相关关系。 相似文献
4.
5.
考虑润滑剂剪切强度,计算等温纯滚动弹流膜厚,回归出的中心膜厚公式表示不同工况下弹流润滑偏离经典理论的程序,这种偏离实际代表在严重发热的弹流润滑中,入口区润滑剂切强度或润滑剂/接触表面处最大可承受剪应力下降时,弹流润滑失效润滑膜的厚度。 相似文献
6.
厚膜压力传感器的研究 总被引:1,自引:0,他引:1
用厚膜工艺制造压力传感器。研究了厚膜是民阻浆料的是电阻率与压阻系数的关系,承压基片选用ZrO2-Y2O33mol%增韬Al2O3陶瓷,大大地提高了压力感器的性能,对承压片的应力分布进行了分析,介绍了压力传感器的结构设计方法。 相似文献
7.
8.
用厚膜工艺制造压力传感器.研究了厚膜电阻浆料的电阻率与压阻系数的关系.承压基片选用ZrO2-Y2O33mol%增韧Al2O3陶瓷,大大地提高了压力传感器的性能.对承压片的应力分布进行了分析,介绍了压力传感器的结构设计方法 相似文献
9.
本文简单介绍了滑块丝杠副的驱动原理,以及弹性流体润滑理论。然后列出了基于弹流润滑理论推导这种接触副的最小膜厚公式,并举算例说明。为该机构的润滑设计提供理论上的支持。 相似文献
10.
目的 研究垂直及倾斜上升弹状流中下降液膜的流动特性。方法 采用EKTAPRO1000型高速动态分析仪测量垂直及倾斜上升管内气液两相弹状流中下降液膜运动速度及其厚度沿Taylor气泡的变化情况。结果 获得了有关下降液膜流动特性的无干扰流场测量数据。结论 液膜的流动特性与管倾角、气液流速以及Taylor气流长度有关,其中气泡长度是最主要的影响因素,在高混合物流速下,流动趋于轴对称,此时可忽略倾角的影响 相似文献
11.
本文提出一种根据脂的实测表观粘度拟合成四参数流变模型的方法。运用加权残量法导出了纯滚动脂润滑一维流动的当量雷诺方程,并采用Chris-tensen的简化全数值解,通过多次迭代使表征非牛顿效应的参数收敛,以逼近不同工况下的实际流动,进而得出了脂润滑线接触中心膜厚公式。由光干涉实验证明本文理论计算结果与实际非常接近。 相似文献
12.
汪子祥 《华东理工大学学报(自然科学版)》1988,(6)
用电阻应变片法在滚动轴承上测试各种类型润滑脂的弹性流体动压润滑(EHD)膜厚h_c。结果表明,h_c与基础油的粘度密切有关,且受到皂的类型及浓度的影响。提出了不同工况下适宜的润滑脂类型及其浓度的选用原则。 相似文献
13.
14.
推导并建立了推杆式活齿减速器传动中活齿—导槽副的润滑方程。首次揭示了活齿承受油膜劝压力的分布规律,以及活齿在运动周期里,油膜压力和最小油膜厚度的变化规律。 相似文献
15.
非线性粘弹性本构方程及其在弹流润滑中的应用 总被引:2,自引:0,他引:2
文中将线性多组元粘弹性模型在两种不同坐标系中推广从而得到两个非线性粘弹性本构方程,并用这两种本构关系对弹流中摩擦拖曳力进行计算,取得了新的结果。 相似文献
16.
采用多重网格技术,通过对乏油弹流润滑基本方程的数值求解研究了椭圆接触乏油弹流润滑,分析了入口初始位置对乏油润滑中心膜厚、最小膜厚、油膜压力及部分油膜比例的影响.结果表明:中心膜厚和最小膜厚随着入口区初始位置远离接触中心而逐渐增大,并最终趋于一个稳定的值.随着入口初始位置向接触中心移动,接触中心最大油膜压力基本无变化,但是二次压力峰值逐渐向出口区移动并减小;油膜压力区逐渐减小,乏油区增大.当入口初始位置达到1.2时,中心膜厚、最小膜厚和压力区已很小,达到了严重乏油状态. 相似文献
17.
18.
鲍培德 《江苏大学学报(自然科学版)》1992,(3)
根据改进的线接触润滑状态图,提出了点接触(椭圆接触)的新的润滑状态图。读图使弹性流体动力润滑方程运用方便,能直观反映膜厚参数的变化情况和工作条件对润滑状态的影响,特别适于研究一特定设备中工作负荷和运行速度对润滑膜厚的影响。 相似文献