首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文在Riemann积分第二中值定理中,加上一个非常一般化的条件后,得出了一个较强的结果:设函数f在区间[a,b]上非负、不增,且f(a+0)-f(b-0)>0,函数g在[a,b]上Riemann可积,则存在一点ξ∈(a,b),使得integral from n=a to b f(x)g(x)dx=f(a)integral from n=a to ξ g(x)dx。  相似文献   

2.
本学报1979年第2期刊登了绍文同志《关于积分第一中值定理》一篇文篇,作者给出了定理的证明。本文就C∈(a,b)的问题再给出一个较为简明的证明,并给一个例子,说明连续的条件是必要的,即若f(x)在〔a,b〕上不连续时,则结论不再成立。这个定理是这样叙述的: 积分第一中值定理设在区间〔a,b〕上f(x)与g(x)都可积,且g(x)不变号,m≤f(x)≤M,则存在μ,m≤μ≤M,使下式成立 integral from n=a to b(f(x)g(x)dx)=μintegral from n=a to b(g(x)dx) (1)如果f(x)在〔a,b〕上连续,则可进一步证明,存在C∈(a,b),使 (?) (2) 为了叙述上的完整起见,把前一部分的证明也写上。证明:先证前一部分。由f(x)与g(x)在区间〔a,b〕上的可积性知(1)式左端的积分是存  相似文献   

3.
<正> 在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral from n=a to b(f_y(x,y)dx) (1)  相似文献   

4.
大家知道,如果f(x)在〔a,b〕上非负连续且integral from a to b(f(x)dx=0),则f(x)在〔a,b〕上恒等于0.但若把条件减弱为“f(x)在〔a.b〕上非负可积且integral from a to ∞b(f(x)dx=0)”,是否还能作出“在〔a,b〕  相似文献   

5.
定义1.标准函数f(x)在(a,b)(?)~*R上有定义,如果 {n/integral from n=a_n to n f(x)dx存在且有限}∈U其中a=[a_n],b=[b_n],U为自然数集N的自由超滤子,integral from n=a_n to b_n f(x)dx是Riemann意义下的积分,则称f(x)在(a, b)(?)~*R上可积,称非标准数[integral from n=a_n to n f(x)dx]为f(x)在(a, b)(?)~*R上的积分,记作integral from n=(a.b) to f(x)dx。  相似文献   

6.
文〔1〕将牛顿——莱布尼兹公式进行了推广,本文进一步推广为:定理设函数f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_-′(x)在(a,b)内存在,如果存在 p、q≥0,满足 p+q=1,使得函数 pf_+′(x)+qf_--′(x)在〔a,b〕上黎曼可积,则integral from b to a (pf_+′(x)+qf_--′(x))dx=f(b)-f(a).为证此结果先介绍两个有用的引理.引理1 设 f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_--′(x)在(a,b)内存在,则存在ξ∈(a,b)  相似文献   

7.
该文研究了具有一般权函数w(x)的积分integral from 0 to b w(x)f(x)dx,得出了普遍意义下的Gauss-Kronrod规则,给出并证明了相应代数精确度的两个结果。这些结果主要依赖于下列命题: (1)对一般权函数w(x),q,(z)=integral from 0 to b w(t)p_n(t)/(z-t)dt满足三项递推关系; (2)设E_n(z)为〔q,(z)〕~(-1)的主部,则q_n(z)E_n(z)∈span{1,q_(n+1)(Z),…,q_(2n+1)(Z)}; (3)integral from 0 to b w(z)p_n(z)z~k dz=0,0≤k≤n; (4)对特殊函数w(x)=1,E_n(z)之零点是〔a,b〕的单零点,且被p_n(x)的零点隔开。  相似文献   

8.
在计算付伦涅尔积分的过程中,我发觉一些分析教科书上现成的积分次序交换定理都不能引用,因此我建立一个新的积分次序交换定理。 在分析教科书上找到的定理是: 定理A 设二元函数f(x,y)满足条件:(1)在区域上连续; (2)integral from a to ∞(f(x,y)dx)关于y∈[α,β]一致收敛,integral from a to ∞(f(x,y)dy)关于x∈[a,b]一致收敛,β,b是任意给定的数:β>α,b>a;(3)integral from a to ∞(dx) integral from α to ∞(|f(x,y)|dy),integral from α to ∞(dy) integral from a to ∞(|f(x,y)dx)至少有一个存在(有限)。那末  相似文献   

9.
<正>在定积分计算中,有如下性质.性质i:若f(x)为[-a,a]上的连续奇函数,则integral from n=-a to a f(x)dx=0性质ii:若f(x)为[-a,a]上的连续偶函数,则integral from n=-a to a f(x)dx=2 integral from n=0 to a f(x)dx本文将上述两个性质推广到如下情形、得到一个更一般的性质.性质1:若f(x)为闭区间[a,b]上的连续函数  相似文献   

10.
在不定积分中,其中之一的积分方法:设y=f(x),x=φ(t)及f′(t)都是连续的,x=φ(t)的反函数t=φ~(-a)(x)存在且可导,并且∫f[φ(t)]·φ′(t)dt=F(t)+C,则∫f(x)dx=F[φ~(-a)(x)]+C。在定积分中的换元法则是:对于定积分integral from n=a to b(f(x)dx),其中f(x)在区间[a,b]上连续,如果函数x=0φ(t)满足下列条件(1)φ(t)在区间[α,β]上有定义′是单值的′单调的,且有连续导数φ′(t)。(2)当t在区间[α,β]上变化时,x=φ(t)的值在区间[a,b]上变化,在这些条件下,则有公式integral from n=a to b(f(x)dx)=integral from n=α to β(f[φ(t)·φ′(t)dt)  相似文献   

11.
首先证明,L~2[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|~2)dx~(1/2),三角函数系F_1={1/2~(1/2),cosX,SinX,…,CosnX,SinnX,…}是完全就范直交系。证:设SpanF_1为形如sum from k=0 to n(a_kcoskx+b_ksinkx)的三角多项式的全体。C_(2π)为以2π为周期的连续函数的全体,则据Weiestrass逼近定理,对(?)ε>0,f∈2π,(?)T(x)=sum from k=0 to N(a_kcoskx+b_ksinkx)使(?)|f(x)-T(x)|<ε  相似文献   

12.
在研究Fourier级数的收敛性时,用到这样一个结论。黎曼引理若f(x)在〔a,b〕上可积,则(?)其证明可见〔1〕、〔2〕。本文将首先利用同〔1〕类似的方法证明更为广泛的结论(定理1、定理2),其次对瑕义积分的情况,也给出了类似的结论(定理3)。定理1 若g(x,y)在R:a≤x≤b,y_0-η相似文献   

13.
Ⅰ.引言§1.在這篇文章里,我們將引用下符號: AB=AB(x,y)=integral from n=a to b A(x,s)B(s,y)ds, (?)=(?)=integral from n=a to b A(x,s)B(y,s)ds, (?)=(?)=integral from n=a to bA(s,x)B(s,y)ds, (f,g)=integral from n=a to bf(x)g(x)dx,‖f‖~2=(f,f), Kψ(x)=integral from n=a to b K(y,x)ψ(y)dy。在(?)及(?)中,我們稱A為左因子,B為右因子抑^(?)及(?)是由於“A右乘以B”或“B左乘以A”得來的。此外,記(?)是一個(x,y)的函數,這個函數合有n個因子A_1(x,y),A_2(x,y),…,A_n(x,y),且認為它是由於從左至右逐次將前面運算所得的左因子右乘以緊接着後面的右因子經過(n-1)次運算得來的?(?)是由於以(?)为左因子右乘以右因子A_3(x,y)得來的。(?)是由於以(?)為左因子右乘以右因子A_4(x,y)得來的。依此類推,則A_1A_2A_3…A_(n-1)A_n(x,y)是由於以A_1A_2…A_(n-1)(x,y)為左因  相似文献   

14.
本文利用具有重结点的自然样条函数,讨论了线性泛函Ff=sum from i=0 to n-1[integral from a to b a_i(x)D~i f(x)dx+sum from j=0 to L~1 b_(ij)D~i f(x_(ij))]的广义Sard逼近问题。文中给出了线性泛函Lf=sum from i=0 to k sum from j=0 to k_1-1 a_(ij)D~j f(x_i)逼近F为n-1阶准确的存在定理与唯一性定理;给出了L做为F的广义Sard逼近的充分必要条件。  相似文献   

15.
引言设{ξ_k}是独立同分布的随机变量序列,其均值Eξ_k=0,方差D(ξ_k)=1,(k=1、2…)。记η_n=sum from K=1 to=n(ξ_k) ξ_n=η_n/n~(1/2) 那么独立同分布的中心极限定理成立,即 n→∞P(ξ_n相似文献   

16.
文献[1]给出了随机存贮系统中每单位时间的平均缺货量函数F_1(x,y)和平均未偿还的延迟交货额函数F_2(x,y)的表达式,即 F_1(x,y)=ρ[f_1(x)-f_1(x+y)]/y;F_2(x,y)=[f_2(x)-f_2(x+y)]/y,(1)其中,f_1(u)=integral from n=u to ∞([1-Φ_D(ξ)]dξ);ρ为系统的平均需求速率,且为大于0的常数;f_2(u)=integral from n=u to ∞((ξ-u)[1-Φ_D(ξ)]dξ)。  相似文献   

17.
在本文中给出两种方法来求:当n→∞时, J_n(ω)=integral from n=-1 to 1 ρ(x)((u_n(1)-u_n(x))/(1-x)~ω)dx的渐近表达式,这里u_n(x)为n次多项式,ρ(x)为适当选取的函数在开区间(-1,1)中连续并取正值,ω为适当的正实数。第一种方法利用多项式u_n(x)具有特殊形式的循环公式。第二种方法是:当u_n(x)具有洛巨里格表达式且ω的取值在适当的区间中时,可以求出(?)_n(ω)=integral from n=-1 to1 ρ(x)((u_n(x))/(1-x)~ω)dx,于是利用解析延拓法,当ω的取值在更大的区间中时,可以求出J_n(ω)。利用第二种方法证明了下述定理: 设α≥-1/2且α≥β>-1。令f(x)=sum from n=0 to ∞c_nP_n~((α,β))(x),这里P_n~((α,β))(x)表示雅谷比多项式,如果c_n终规为正,且sum from n=0 to ∞c_nP_n~((α,β))(1)=0, 则按照λ=1或1<λ<2,integral from n=0 to 1 ((f(x)/(1-x)~λ))dx存在的充要条件分别是Σc_nn~αlogn收敛或Σc_nn~(α 2(λ-1))收敛。利用本定理即可推出:作者在函数项级数的积分一文中所证明的关于勒襄特级数及切比晓夫级数的两定理。  相似文献   

18.
定理Ⅰ.設[a,b]是f(x)和a(x)的定义区,假如f(x)是一有界函数,a(x)是一有界变差的数函,那未黎曼一斯帝捷积分 (1) integral from n=a to b f(x)da(x) 存在的充要条件是对于任一正数η,成立着 (2)  相似文献   

19.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

20.
设L[a,b]表示有限区间[a,b]上可积函数的全体,{f_n(x)}为定义在[a,b]上的一个函数列。若对任意的g(x)∈L[a,b],只要integral from n=a to b f_n(x)g(x)=0,n=1,2,3,……就有g(x)在[a,b]上几乎处处为零,则称{f_n(x)}在[a,b]上是完全的。著名的Müntz—Sz'asz定理指出:幂函数列{x~(n_p)}在[a,b]上完全的充分必要条件是sum from p=1 to ∞ 1/n_p=+∞。其中a≥0,0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号