首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peppiatt CM  Howarth C  Mobbs P  Attwell D 《Nature》2006,443(7112):700-704
Neural activity increases local blood flow in the central nervous system (CNS), which is the basis of BOLD (blood oxygen level dependent) and PET (positron emission tomography) functional imaging techniques. Blood flow is assumed to be regulated by precapillary arterioles, because capillaries lack smooth muscle. However, most (65%) noradrenergic innervation of CNS blood vessels terminates near capillaries rather than arterioles, and in muscle and brain a dilatory signal propagates from vessels near metabolically active cells to precapillary arterioles, suggesting that blood flow control is initiated in capillaries. Pericytes, which are apposed to CNS capillaries and contain contractile proteins, could initiate such signalling. Here we show that pericytes can control capillary diameter in whole retina and cerebellar slices. Electrical stimulation of retinal pericytes evoked a localized capillary constriction, which propagated at approximately 2 microm s(-1) to constrict distant pericytes. Superfused ATP in retina or noradrenaline in cerebellum resulted in constriction of capillaries by pericytes, and glutamate reversed the constriction produced by noradrenaline. Electrical stimulation or puffing GABA (gamma-amino butyric acid) receptor blockers in the inner retina also evoked pericyte constriction. In simulated ischaemia, some pericytes constricted capillaries. Pericytes are probably modulators of blood flow in response to changes in neural activity, which may contribute to functional imaging signals and to CNS vascular disease.  相似文献   

2.
Miniature eye movements enhance fine spatial detail   总被引:1,自引:0,他引:1  
Rucci M  Iovin R  Poletti M  Santini F 《Nature》2007,447(7146):851-854
Our eyes are constantly in motion. Even during visual fixation, small eye movements continually jitter the location of gaze. It is known that visual percepts tend to fade when retinal image motion is eliminated in the laboratory. However, it has long been debated whether, during natural viewing, fixational eye movements have functions in addition to preventing the visual scene from fading. In this study, we analysed the influence in humans of fixational eye movements on the discrimination of gratings masked by noise that has a power spectrum similar to that of natural images. Using a new method of retinal image stabilization, we selectively eliminated the motion of the retinal image that normally occurs during the intersaccadic intervals of visual fixation. Here we show that fixational eye movements improve discrimination of high spatial frequency stimuli, but not of low spatial frequency stimuli. This improvement originates from the temporal modulations introduced by fixational eye movements in the visual input to the retina, which emphasize the high spatial frequency harmonics of the stimulus. In a natural visual world dominated by low spatial frequencies, fixational eye movements appear to constitute an effective sampling strategy by which the visual system enhances the processing of spatial detail.  相似文献   

3.
Retinal ganglion cells are the projection neurons that link the retina to the brain. Peptide immunoreactive cells in the ganglion cell layer (GCL) of the mammalian retina have been noted but their identity has not been determined. We now report that, in the rabbit, 25-35% of all retinal ganglion cells contain substance P-like (SP) immunoreactivity. They were identified by either retrograde transport of fluorescent tracers injected into the superior colliculus, or by retrograde degeneration after optic nerve section. SP immunoreactive cells are present in all parts of the retina and have medium to large cell bodies with dendrites that ramify extensively in the proximal inner plexiform layer. Their axons terminate in the dorsal lateral geniculate nucleus, superior colliculus and accessory optic nuclei, and these terminals disappear completely after contralateral optic nerve section and/or eye enucleation. In the dorsal lateral geniculate nucleus large, beaded, immunoreactive axons and varicosities make up a narrow plexus just below the optic tract, where they define a new geniculate lamina. The varicosities make multiple synaptic contacts with dendrites of dorsal lateral geniculate nucleus projection neurons and presumptive interneurons in complex glomerular neuropil. This is direct evidence that some mammalian retinal ganglion cells contain substance P-like peptides and strongly suggests that, in the rabbit, substance P (or related tachykinins) may be a transmitter or modulator in a specific population or populations of retinal ganglion cells.  相似文献   

4.
T A Reh  T Nagy  H Gretton 《Nature》1987,330(6143):68-71
Although the regeneration of nervous tissue in the vertebrate is very limited, there are a few remarkable examples of this process. Understanding the factors that regulate CNS regeneration in those areas of the nervous system where it occurs, will doubtless provide generally applicable, essential information about the process. It has been known for some time that the amphibian retina regenerates following its destruction. Transplant studies, confirmed later by in vitro experiments, have shown that one source of new neurons in regenerating retina is the retinal pigmented epithelium (RPE). RPE cells can transdifferentiate to either neurons or lens cells in culture, but little is known about the factors that regulate this process. A recent study in vivo of retinal regeneration provided evidence that the association of RPE cells with the retinal vascular membrane is an important step in transdifferentiation. We report here that transdifferentiation in vitro is profoundly influenced by the substrate on which the cells are cultured; RPE cells plated on laminin-containing substrates frequently transdifferentiate into neurons. In addition, we have found a high concentration of laminin in the Rana retinal vascular membrane. Therefore, we propose that retinal regeneration is initiated by changes in the composition of the extracellular matrix that RPE cells contact early in the process.  相似文献   

5.
J O Hahm  R B Langdon  M Sur 《Nature》1991,351(6327):568-570
Afferent activity has an important role in the formation of connections in the developing mammalian visual system. But the extent to which the activity of target neurons shapes patterns of afferent termination and synaptic contact is not known. In the ferret's visual pathway, retinal ganglion cell axons from each eye segregate early in development into eye-specific laminae in the lateral geniculate nucleus (LGN). The dorsal laminae (termed laminae A and A1) then segregate further into inner and outer sublaminae that retain input from on-centre and off-centre retinal axons, respectively. Thus, individual retinogeniculate axons form terminal arbors within laminae A and A1 that are restricted to one inner or outer sublamina. We report here that blockade of N-methyl-D-aspartate (NMDA) receptors on LGN cells with specific antagonists during the period of sublamina formation prevents retinal afferents from segregating into 'On' and 'Off' sublaminae. Retinogeniculate axons have arbors that are not restricted appropriately, or are restricted in size but inappropriately positioned within the eye-specific laminae. NMDA receptor antagonists may specifically disrupt a mechanism by which LGN neurons detect correlated afferent and target activity, and have been shown to reduce retinogeniculate transmission more generally, causing LGN cells to have markedly reduced levels of activity. These results therefore indicate that the activity of postsynaptic cells can significantly influence the patterning of inputs and the structure of presynaptic afferents during development.  相似文献   

6.
Olveczky BP  Baccus SA  Meister M 《Nature》2003,423(6938):401-408
An important task in vision is to detect objects moving within a stationary scene. During normal viewing this is complicated by the presence of eye movements that continually scan the image across the retina, even during fixation. To detect moving objects, the brain must distinguish local motion within the scene from the global retinal image drift due to fixational eye movements. We have found that this process begins in the retina: a subset of retinal ganglion cells responds to motion in the receptive field centre, but only if the wider surround moves with a different trajectory. This selectivity for differential motion is independent of direction, and can be explained by a model of retinal circuitry that invokes pooling over nonlinear interneurons. The suppression by global image motion is probably mediated by polyaxonal, wide-field amacrine cells with transient responses. We show how a population of ganglion cells selective for differential motion can rapidly flag moving objects, and even segregate multiple moving objects.  相似文献   

7.
C Lee  W H Rohrer  D L Sparks 《Nature》1988,332(6162):357-360
The deeper layers of the superior colliculus are involved in the initiation and execution of saccadic (high velocity) eye movements. A large population of coarsely tuned collicular neurons is active before each saccade. The mechanisms by which the signals that precisely control the direction and amplitude of a saccade are extracted from the activity of the population are unknown. It has been assumed that the exact trajectory of a saccade is determined by the activity of the entire population and that information is not extracted from only the most active cells in the population at a subsequent stage of neural processing. The trajectory of a saccade could be based on vector summation of the movement tendencies provided by each member of the population of active neurons or be determined by a weighted average of the vector contributions of each neuron in the active population. Here we present the results of experiments in which a small subset of the active population was reversibly deactivated with lidocaine. These results are consistent with the predictions of the latter population-averaging hypothesis and support the general idea that the direction, amplitude and velocity of saccadic eye movements are based on the responses of the entire population of cells active before a saccadic eye movement.  相似文献   

8.
目的:分析以视物变形为首诊的视网膜脱离患者误诊原因及治疗效果。方法:回顾性分析2009年1月-2009年12月间67例以视物变形首诊的患者。进行详细病史再询问、详细眼底检查、B超或造影后得出最后诊断并进行手术治疗。结果:67例(67眼)以视物变形首诊患者中视网膜脱离8例(8眼,11.9%),中心性浆液性脉络膜视网膜炎29例(29眼,43.3%),黄斑水肿(10眼,14.9%),老年性黄斑变性(20眼,29.9%)。8例视网膜脱离误诊为中心性浆液性脉络膜视网膜炎(n=4,50%),视网膜色素变性(n=2,25%),黄斑水肿(n=2,25%)。8例视网膜脱离均进行了视网膜手术,术后B超复查视网膜平坦,术后矫正视力均好转(100%,P<0.01)。结论:症状不典型的视网膜脱离容易被误诊,系统的眼部检查和详细鉴别诊断可减少误诊。  相似文献   

9.
Molecular mechanisms and clinical applications of angiogenesis   总被引:1,自引:0,他引:1  
Carmeliet P  Jain RK 《Nature》2011,473(7347):298-307
Blood vessels deliver oxygen and nutrients to every part of the body, but also nourish diseases such as cancer. Over the past decade, our understanding of the molecular mechanisms of angiogenesis (blood vessel growth) has increased at an explosive rate and has led to the approval of anti-angiogenic drugs for cancer and eye diseases. So far, hundreds of thousands of patients have benefited from blockers of the angiogenic protein vascular endothelial growth factor, but limited efficacy and resistance remain outstanding problems. Recent preclinical and clinical studies have shown new molecular targets and principles, which may provide avenues for improving the therapeutic benefit from anti-angiogenic strategies.  相似文献   

10.
Kim IJ  Zhang Y  Yamagata M  Meister M  Sanes JR 《Nature》2008,452(7186):478-482
The retina contains complex circuits of neurons that extract salient information from visual inputs. Signals from photoreceptors are processed by retinal interneurons, integrated by retinal ganglion cells (RGCs) and sent to the brain by RGC axons. Distinct types of RGC respond to different visual features, such as increases or decreases in light intensity (ON and OFF cells, respectively), colour or moving objects. Thus, RGCs comprise a set of parallel pathways from the eye to the brain. The identification of molecular markers for RGC subsets will facilitate attempts to correlate their structure with their function, assess their synaptic inputs and targets, and study their diversification. Here we show, by means of a transgenic marking method, that junctional adhesion molecule B (JAM-B) marks a previously unrecognized class of OFF RGCs in mice. These cells have asymmetric dendritic arbors aligned in a dorsal-to-ventral direction across the retina. Their receptive fields are also asymmetric and respond selectively to stimuli moving in a soma-to-dendrite direction; because the lens reverses the image of the world on the retina, these cells detect upward motion in the visual field. Thus, JAM-B identifies a unique population of RGCs in which structure corresponds remarkably to function.  相似文献   

11.
K Yarrow  P Haggard  R Heal  P Brown  J C Rothwell 《Nature》2001,414(6861):302-305
When voluntary saccadic eye movements are made to a silently ticking clock, observers sometimes think that the second hand takes longer than normal to move to its next position. For a short period, the clock appears to have stopped (chronostasis). Here we show that the illusion occurs because the brain extends the percept of the saccadic target backwards in time to just before the onset of the saccade. This occurs every time we move the eyes but it is only perceived when an external time reference alerts us to the phenomenon. The illusion does not seem to depend on the shift of spatial attention that accompanies the saccade. However, if the target is moved unpredictably during the saccade, breaking perception of the target's spatial continuity, then the illusion disappears. We suggest that temporal extension of the target's percept is one of the mechanisms that 'fill in' the perceptual 'gap' during saccadic suppression. The effect is critically linked to perceptual mechanisms that identify a target's spatial stability.  相似文献   

12.
Niemeier M  Crawford JD  Tweed DB 《Nature》2003,422(6927):76-80
We scan our surroundings with quick eye movements called saccades, and from the resulting sequence of images we build a unified percept by a process known as transsaccadic integration. This integration is often said to be flawed, because around the time of saccades, our perception is distorted and we show saccadic suppression of displacement (SSD): we fail to notice if objects change location during the eye movement. Here we show that transsaccadic integration works by optimal inference. We simulated a visuomotor system with realistic saccades, retinal acuity, motion detectors and eye-position sense, and programmed it to make optimal use of these imperfect data when interpreting scenes. This optimized model showed human-like SSD and distortions of spatial perception. It made new predictions, including tight correlations between perception and motor action (for example, more SSD in people with less-precise eye control) and a graded contraction of perceived jumps; we verified these predictions experimentally. Our results suggest that the brain constructs its evolving picture of the world by optimally integrating each new piece of sensory or motor information.  相似文献   

13.
目的 建立2型糖尿病视网膜病变大鼠模型.方法 80只雄性SD大鼠随机分成两组:空白对照组(普通饲料)及T2DM组(高脂高糖饲料喂养4周联合30 mg/kg链脲佐菌素腹腔注射).链脲佐菌素注射后观察大鼠一般情况、每周测量体质量、随机血糖、空腹血糖、空腹血清胰岛素等指标,计算并分析胰岛抵抗指数(HOMA-IR).分别在血糖...  相似文献   

14.
Reber M  Burrola P  Lemke G 《Nature》2004,431(7010):847-853
The highly ordered wiring of retinal ganglion cell (RGC) neurons in the eye to their synaptic targets in the superior colliculus of the midbrain has long served as the dominant experimental system for the analysis of topographic neural maps. Here we describe a quantitative model for the development of one arm of this map--the wiring of the nasal-temporal axis of the retina to the caudal-rostral axis of the superior colliculus. The model is based on RGC-RGC competition that is governed by comparisons of EphA receptor signalling intensity, which are made using ratios of, rather than absolute differences in, EphA signalling between RGCs. Molecular genetic experiments, exploiting a combinatorial series of EphA receptor knock-in and knockout mice, confirm the salient predictions of the model, and show that it both describes and predicts topographic mapping.  相似文献   

15.
K C Wikler  P Rakic 《Nature》1991,351(6325):397-400
The retina of diurnal primates, including humans, contains a reiterative mosaic of red-, green- and blue-sensitive cones whose visual pigments are maximally sensitive to long, middle or short wavelengths, respectively. Although the distribution of the cone subtypes in the adult rhesus monkey has been quantified using opsin-specific antisera, the mechanism for the phenotypic specification of the cone subtypes and the establishment of their ratios in the retinal mosaic remain unknown. Here we present immunocytochemical evidence that a subset of cones (about 10%) express their cell-specific opsin two to three weeks before the surrounding cones. Remarkably, these precocious cones are evenly stationed throughout undifferentiated regions of the retinal surface from several weeks after their last mitotic division, and at least one month before the formation of their synapses with bipolar and horizontal cells. Use of confocal laser microscopy reveals that the inner segments of immunolabelled and surrounding unlabelled cones are transiently in apposition with one another, enabling surface mediated interactions to occur during this period. We suggest that the early maturing cones induce neighbouring undifferentiated cones to express an appropriate opsin phenotype, and therefore constitute a 'protomap' for the emergence of the species-specific retinal mosaic.  相似文献   

16.
初中不同阅读能力学生的阅读眼动特点比较   总被引:3,自引:0,他引:3  
用眼动记录仪对初中二年级不同阅读能力的学生(高阅读能力和低阅读能力各10名)在阅读说明文时的眼动过程进行了记录.结果发现:高阅读能力学生在阅读时间、注视点的持续时间、回视次数和注视次数上都显著地低于低阅读能力的学生,而注视频率显著地高于低阅读能力的学生;在眼跳角度和眼跳潜伏期2项眼动指标上没有显著差异.  相似文献   

17.
Localization of nitric oxide synthase indicating a neural role for nitric oxide.   总被引:142,自引:0,他引:142  
D S Bredt  P M Hwang  S H Snyder 《Nature》1990,347(6295):768-770
Nitric oxide (NO), apparently identical to endothelium-derived relaxing factor in blood vessels, is also formed by cytotoxic macrophages, in adrenal gland and in brain tissue, where it mediates the stimulation by glutamate of cyclic GMP formation in the cerebellum. Stimulation of intestinal or anococcygeal nerves liberates NO, and the resultant muscle relaxation is blocked by arginine derivatives that inhibit NO synthesis. It is, however, unclear whether in brain or intestine, NO released following nerve stimulation is formed in neurons, glia, fibroblasts, muscle or blood cells, all of which occur in proximity to neurons and so could account for effects of nerve stimulation on cGMP and muscle tone. We have now localized NO synthase protein immunohistochemically in the rat using antisera to the purified enzyme. We demonstrate NO synthase in the brain to be exclusively associated with discrete neuronal populations. NO synthase is also concentrated in the neural innervation of the posterior pituitary, in autonomic nerve fibres in the retina, in cell bodies and nerve fibres in the myenteric plexus of the intestine, in adrenal medulla, and in vascular endothelial cells. These prominent neural localizations provide the first conclusive evidence for a strong association of NO with neurons.  相似文献   

18.
Retinal astrocytes are immigrants from the optic nerve   总被引:15,自引:0,他引:15  
T Watanabe  M C Raff 《Nature》1988,332(6167):834-837
The retina in most mammals contains two types of macroglial cells--Müller cells, which span the entire thickness of the retina, and astrocytes, which are mainly confined to the nerve fibre layer. Whereas Müller cells are diffusely distributed in all vertebrate retinae, the presence and distribution of retinal astrocytes correlate with the presence and distribution of retinal blood vessels: retinae that are avascular contain no astrocytes; those that are diffusely vascularized contain diffusely distributed astrocytes; and those that are vascularized in a restricted region contain astrocytes only in the vascularized region. This striking correlation between vascularization and the presence of astrocytes led Stone and Dreher to postulate that retinal astrocytes are immigrants that enter the retina with its vasculature, although others have suggested that they derive from Müller cells. Here we provide strong evidence that astrocytes in the diffusely vascularized rat retina are immigrants from the optic nerve.  相似文献   

19.
B D Kuppermann  T Kasamatsu 《Nature》1983,306(5942):465-468
When a kitten is subjected to monocular lid suture early in life, cells in laminae of the lateral geniculate nucleus (LGN) connected to the sutured eye grow less than normal and cells in those laminae connected to the non-sutured eye grow more than normal. These changes are seen primarily in the binocular segment of the LGN, which corresponds to the central visual field, and are due to competition either between intracortical afferents originating from the different LGN laminae, or directly among cells within the LGN. The afferent deprivation induced by lid suture, however, is not complete, as retinal ganglion cells fire tonically both in darkness and in light. It is generally thought that this tonic retinal activity is necessary to maintain neuronal excitability at normal threshold in the central visual pathway. In the visual cortex of developing kittens, we previously showed a long-lasting change in ocular dominance of binocular cells by a brief blockade of retinal activity in one optic nerve. We report here that a complete blockade of retinal activity in one eye causes major changes in LGN cell size within 1 week. These changes occur throughout the LGN, including the monocular segment where binocular competition does not occur. The results indicate that tonic retinal activity may have an important role in the control of geniculate cell size.  相似文献   

20.
Dynamic coding of behaviourally relevant stimuli in parietal cortex.   总被引:12,自引:0,他引:12  
Louis J Toth  John A Assad 《Nature》2002,415(6868):165-168
A general function of cerebral cortex is to allow the flexible association of sensory stimuli with specific behaviours. Many neurons in parietal, prefrontal and motor cortical areas are activated both by particular movements and by sensory cues that trigger these movements, suggesting a role in linking sensation to action. For example, neurons in the lateral intraparietal area (LIP) encode both the location of visual stimuli and the direction of saccadic eye movements. LIP is not believed to encode non-spatial stimulus attributes such as colour. Here we investigated whether LIP would encode colour if colour was behaviourally linked to the eye movement. We trained monkeys to make an eye movement in one of two directions based alternately on the colour or location of a visual cue. When cue colour was relevant for directing eye movement, we found a substantial fraction of LIP neurons selective for cue colour. However, when cue location was relevant, colour selectivity was virtually absent in LIP. These results demonstrate that selectivity of cortical neurons can change as a function of the required behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号