首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Meier-Gorlin syndrome (ear, patella and short-stature syndrome) is an autosomal recessive primordial dwarfism syndrome characterized by absent or hypoplastic patellae and markedly small ears1?3. Both pre- and post-natal growth are impaired in this disorder, and although microcephaly is often evident, intellect is usually normal in this syndrome. We report here that individuals with this disorder show marked locus heterogeneity, and we identify mutations in five separate genes: ORC1, ORC4, ORC6, CDT1 and CDC6. All of these genes encode components of the pre-replication complex, implicating defects in replication licensing as the cause of a genetic syndrome with distinct developmental abnormalities.  相似文献   

2.
3.
The dystonias are a common clinically and genetically heterogeneous group of movement disorders. More than ten loci for inherited forms of dystonia have been mapped, but only three mutated genes have been identified so far. These are DYT1, encoding torsin A and mutant in the early-onset generalized form, GCH1 (formerly known as DYT5), encoding GTP-cyclohydrolase I and mutant in dominant dopa-responsive dystonia, and TH, encoding tyrosine hydroxylase and mutant in the recessive form of the disease. Myoclonus-dystonia syndrome (MDS; DYT11) is an autosomal dominant disorder characterized by bilateral, alcohol-sensitive myoclonic jerks involving mainly the arms and axial muscles. Dystonia, usually torticollis and/or writer's cramp, occurs in most but not all affected patients and may occasionally be the only symptom of the disease. In addition, patients often show prominent psychiatric abnormalities, including panic attacks and obsessive-compulsive behavior. In most MDS families, the disease is linked to a locus on chromosome 7q21 (refs. 11-13). Using a positional cloning approach, we have identified five different heterozygous loss-of-function mutations in the gene for epsilon-sarcoglycan (SGCE), which we mapped to a refined critical region of about 3.2 Mb. SGCE is expressed in all brain regions examined. Pedigree analysis shows a marked difference in penetrance depending on the parental origin of the disease allele. This is indicative of a maternal imprinting mechanism, which has been demonstrated in the mouse epsilon-sarcoglycan gene.  相似文献   

4.
CHARGE syndrome is a common cause of congenital anomalies affecting several tissues in a nonrandom fashion. We report a 2.3-Mb de novo overlapping microdeletion on chromosome 8q12 identified by array comparative genomic hybridization in two individuals with CHARGE syndrome. Sequence analysis of genes located in this region detected mutations in the gene CHD7 in 10 of 17 individuals with CHARGE syndrome without microdeletions, accounting for the disease in most affected individuals.  相似文献   

5.
Using exome sequencing and a variant prioritization strategy that focuses on loss-of-function variants, we identified biallelic, loss-of-function CEP57 mutations as a cause of constitutional mosaic aneuploidies. CEP57 is a centrosomal protein and is involved in nucleating and stabilizing microtubules. Our findings indicate that these and/or additional functions of CEP57 are crucial for maintaining correct chromosomal number during cell division.  相似文献   

6.
Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome.   总被引:14,自引:0,他引:14  
Rothmund-Thomson syndrome (RTS; also known as poikiloderma congenitale) is a rare, autosomal recessive genetic disorder characterized by abnormalities in skin and skeleton, juvenile cataracts, premature ageing and a predisposition to neoplasia. Cytogenetic studies indicate that cells from affected patients show genomic instability often associated with chromosomal rearrangements causing an acquired somatic mosaicism. The gene(s) responsible for RTS remains unknown. The genes responsible for Werner and Bloom syndromes (WRN and BLM, respectively) have been identified as homologues of Escherichia coli RecQ, which encodes a DNA helicase that unwinds double-stranded DNA into single-stranded DNAs. Other eukaryotic homologues thus far identified are human RECQL, Saccharomyces cerevisiae SGS1 and Schizosaccharomyces pombe rqh1. We recently cloned two new human helicase genes, RECQL4 at 8q24.3 and RECQL5 at 17q25, which encode members of the RecQ helicase family. Here, we report that three RTS patients carried two types of compound heterozygous mutations in RECQL4. The fact that the mutated alleles were inherited from the parents in one affected family and were not found in ethnically matched controls suggests that mutation of RECQL4 at human chromosome 8q24.3 is responsible for at least some cases of RTS.  相似文献   

7.
Griscelli syndrome (GS, MIM 214450), a rare, autosomal recessive disorder, results in pigmentary dilution of the skin and the hair, the presence of large clumps of pigment in hair shafts and an accumulation of melanosomes in melanocytes. Most patients also develop an uncontrolled T-lymphocyte and macrophage activation syndrome (known as haemophagocytic syndrome, HS), leading to death in the absence of bone-marrow transplantation. In contrast, early in life some GS patients show a severe neurological impairment without apparent immune abnormalities. We previously mapped the GS locus to chromosome 15q21 and found a mutation in a gene (MYO5A) encoding a molecular motor in two patients. Further linkage analysis suggested a second gene associated with GS was in the same chromosomal region. Homozygosity mapping in additional families narrowed the candidate region to a 3.1-cM interval between D15S1003 and D15S962. We detected mutations in RAB27A, which lies within this interval, in 16 patients with GS. Unlike MYO5A, the GTP-binding protein RAB27A appears to be involved in the control of the immune system, as all patients with RAB27A mutations, but none with the MYO5A mutation, developed HS. In addition, RAB27A-deficient T cells exhibited reduced cytotoxicity and cytolytic granule exocytosis, whereas MYO5A-defective T cells did not. RAB27A appears to be a key effector of cytotoxic granule exocytosis, a pathway essential for immune homeostasis.  相似文献   

8.
IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital anomalies) is an undergrowth developmental disorder with life-threatening consequences. An identity-by-descent analysis in a family with IMAGe syndrome identified a 17.2-Mb locus on chromosome 11p15 that segregated in the affected family members. Targeted exon array capture of the disease locus, followed by high-throughput genomic sequencing and validation by dideoxy sequencing, identified missense mutations in the imprinted gene CDKN1C (also known as P57KIP2) in two familial and four unrelated patients. A familial analysis showed an imprinted mode of inheritance in which only maternal transmission of the mutation resulted in IMAGe syndrome. CDKN1C inhibits cell-cycle progression, and we found that targeted expression of IMAGe-associated CDKN1C mutations in Drosophila caused severe eye growth defects compared to wild-type CDKN1C, suggesting a gain-of-function mechanism. All IMAGe-associated mutations clustered in the PCNA-binding domain of CDKN1C and resulted in loss of PCNA binding, distinguishing them from the mutations of CDKN1C that cause Beckwith-Wiedemann syndrome, an overgrowth syndrome.  相似文献   

9.
Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype   总被引:1,自引:0,他引:1  
The chromosome 17q21.31 deletion syndrome is a genomic disorder characterized by highly distinctive facial features, moderate-to-severe intellectual disability, hypotonia and friendly behavior. Here, we show that de novo loss-of-function mutations in KANSL1 (also called KIAA1267) cause a full del(17q21.31) phenotype in two unrelated individuals that lack deletion at 17q21.31. These findings indicate that 17q21.31 deletion syndrome is a monogenic disorder caused by haploinsufficiency of KANSL1.  相似文献   

10.
Thiamine-responsive megaloblastic anaemia syndrome (TRMA; MIM 249270) is an autosomal recessive disorder with features that include megaloblastic anaemia, mild thrombocytopenia and leucopenia, sensorineural deafness and diabetes mellitus. Treatment with pharmacologic doses of thiamine ameliorates the megaloblastic anaemia and diabetes mellitus. A defect in the plasma membrane transport of thiamine has been demonstrated in erythrocytes and cultured skin fibroblasts from TRMA patients. The gene causing TRMA was assigned to 1q23.2-q23.3 by linkage analysis. Here we report the cloning of a new gene, SLC19A2, identified from high-through-put genomic sequences due to homology with SLC19A1, encoding reduced folate carrier 1 (refs 8-10). We cloned the entire coding region by screening a human fetal brain cDNA library. SLC19A2 encodes a protein (of 497 aa) predicted to have 12 transmembrane domains. We identified 2 frameshift mutations in exon 2. a 1-bp insertion and a 2-bp deletion, among four Iranian families with TRMA. The sequence homology and predicted structure of SLC19A2, as well as its role in TRMA, suggest that its gene product is a thiamine carrier, the first to be identified in complex eukaryotes.  相似文献   

11.
We used an exome-sequencing strategy and identified an allelic series of NOTCH2 mutations in Hajdu-Cheney syndrome, an autosomal dominant multisystem disorder characterized by severe and progressive bone loss. The Hajdu-Cheney syndrome mutations are predicted to lead to the premature truncation of NOTCH2 with either disruption or loss of the C-terminal proline-glutamate-serine-threonine-rich proteolytic recognition sequence, the absence of which has previously been shown to increase Notch signaling.  相似文献   

12.
We describe here eleven different mutations in SPINK5, encoding the serine protease inhibitor LEKTI, in 13 families with Netherton syndrome (NS, MIM256500). Most of these mutations predict premature termination codons. These results disclose a critical role of SPINK5 in epidermal barrier function and immunity, and suggest a new pathway for high serum IgE levels and atopic manifestations.  相似文献   

13.
By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1, SMARCA4, SMARCA2, SMARCE1, ARID1A and ARID1B.  相似文献   

14.
Meier-Gorlin syndrome is a rare autosomal recessive genetic condition whose primary clinical hallmarks include small stature, small external ears and small or absent patellae. Using marker-assisted mapping in multiple families from a founder population and traditional coding exon sequencing of positional candidate genes, we identified three different mutations in the gene encoding ORC4, a component of the eukaryotic origin recognition complex, in five individuals with Meier-Gorlin syndrome. In two such individuals that were negative for mutations in ORC4, we found potential mutations in ORC1 and CDT1, two other genes involved in origin recognition. ORC4 is well conserved in eukaryotes, and the yeast equivalent of the human ORC4 missense mutation was shown to be pathogenic in functional assays of cell growth. This is the first report, to our knowledge, of a germline mutation in any gene of the origin recognition complex in a vertebrate organism.  相似文献   

15.
16.
The genetic basis of most conditions characterized by congenital contractures is largely unknown. Here we show that mutations in the embryonic myosin heavy chain (MYH3) gene cause Freeman-Sheldon syndrome (FSS), one of the most severe multiple congenital contracture (that is, arthrogryposis) syndromes, and nearly one-third of all cases of Sheldon-Hall syndrome (SHS), the most common distal arthrogryposis. FSS and SHS mutations affect different myosin residues, demonstrating that MYH3 genotype is predictive of phenotype. A structure-function analysis shows that nearly all of the MYH3 mutations are predicted to interfere with myosin's catalytic activity. These results add to the growing body of evidence showing that congenital contractures are a shared outcome of prenatal defects in myofiber force production. Elucidation of the genetic basis of these syndromes redefines congenital contractures as unique defects of the sarcomere and provides insights about what has heretofore been a poorly understood group of disorders.  相似文献   

17.
Arterial tortuosity syndrome (ATS) is an autosomal recessive disorder characterized by tortuosity, elongation, stenosis and aneurysm formation in the major arteries owing to disruption of elastic fibers in the medial layer of the arterial wall. Previously, we used homozygosity mapping to map a candidate locus in a 4.1-Mb region on chromosome 20q13.1 (ref. 2). Here, we narrowed the candidate region to 1.2 Mb containing seven genes. Mutations in one of these genes, SLC2A10, encoding the facilitative glucose transporter GLUT10, were identified in six ATS families. GLUT10 deficiency is associated with upregulation of the TGFbeta pathway in the arterial wall, a finding also observed in Loeys-Dietz syndrome, in which aortic aneurysms associate with arterial tortuosity. The identification of a glucose transporter gene responsible for altered arterial morphogenesis is notable in light of the previously suggested link between GLUT10 and type 2 diabetes. Our data could provide new insight on the mechanisms causing microangiopathic changes associated with diabetes and suggest that therapeutic compounds intervening with TGFbeta signaling represent a new treatment strategy.  相似文献   

18.
Warburg Micro syndrome (WARBM1) is a severe autosomal recessive disorder characterized by developmental abnormalities of the eye and central nervous system and by microgenitalia. We identified homozygous inactivating mutations in RAB3GAP, encoding RAB3 GTPase activating protein, a key regulator of the Rab3 pathway implicated in exocytic release of neurotransmitters and hormones, in 12 families with Micro syndrome. We hypothesize that the underlying pathogenesis of Micro syndrome is a failure of exocytic release of ocular and neurodevelopmental trophic factors.  相似文献   

19.
20.
Large brain size is one of the defining characteristics of modern humans. Seckel syndrome (MIM 210600), a disorder of markedly reduced brain and body size, is associated with defective ATR-dependent DNA damage signaling. Only a single hypomorphic mutation of ATR has been identified in this genetically heterogeneous condition. We now report that mutations in the gene encoding pericentrin (PCNT)--resulting in the loss of pericentrin from the centrosome, where it has key functions anchoring both structural and regulatory proteins--also cause Seckel syndrome. Furthermore, we find that cells of individuals with Seckel syndrome due to mutations in PCNT (PCNT-Seckel) have defects in ATR-dependent checkpoint signaling, providing the first evidence linking a structural centrosomal protein with DNA damage signaling. These findings also suggest that other known microcephaly genes implicated in either DNA repair responses or centrosomal function may act in common developmental pathways determining human brain and body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号