共查询到6条相似文献,搜索用时 0 毫秒
1.
A new satellite to satellite tracking (SST) algorithm from Doppler-shifted frequency measurements is proposed. The estimation principle is demonstrated and the mathematic model of SST is established. The state estimation methods for a user (the cooperative case) and target satellites (the non-cooperative case) are presented based on particle swarm optimization (PSO). The Cramer-Rao lower bounds (CRLB) are deduced as well. Performance of the new algorithm is validated through computer simulations, which proved that the proposed method is effective in terms of the estimation quality compared with CRLB and superior in accuracy to the Bearings-Only (BO) method in almost all simulation cases except for the case that an enough long tracking arc-length is obtained for a user satellite. 相似文献
2.
用随机模式和调整机制改进粒子群优化算法 总被引:1,自引:0,他引:1
胡勇 《重庆邮电大学学报(自然科学版)》2010,22(1):99-102
提出一种改进的粒子群优化(particle swarm optimization,PSO)算法,将随机(random)概念与调整(regula-tion)机制导入PSO算法中,既可避免族群搜寻过程中陷入局部最优解,又可提高算法在最优区域局部搜寻的能力.最后用2种复杂程度不同的函数为例,比较了本算法与广被采用的PSO-CF算法的最优化能力.结果显示,算法在搜寻成功率、平均收敛时间及平均收敛代数方面的性能皆优于PSO-CF算法. 相似文献
3.
当前对于粒子群优化算法(简称基本PSO)的改进主要从控制参数与数学模型入手,但这可能导致会陷入局部最小值。针对这个问题,本文提出一种基于频域滤波模型的PSO算法(简称FPSO)。FPSO是对粒子种群多样性进行定量分析,当粒子集中度低于设定阈值时,以当前最优粒子为中心,在一定半径范围内进行傅里叶变换,通过预设的低通滤波器,削弱当前找到的最优值;然后对当前粒子群施加以最优粒子为势能中心的辐射力,所有粒子在滤波范围外部的空间以较大的速度继续搜索。结果分析表明:基于频域滤波模型的PSO算法提升了种群多样性,有效的提高了全局搜索能力,在求解多峰函数问题的解的精度上优于带电PSO算法与变异PSO算法。 相似文献
4.
5.
提出一种搜索空间自适应的自适应粒子群优化算法.该算法对不同等级的粒子适应值采取不同的惯性权重,并随着算法的迭代不断缩小粒子群的搜索空间.同时,选择当前代的较优部分粒子直接进入下一代,其他粒子通过在缩小的搜索空间内随机生成,加快了种群收敛速度,同时又能使种群不断跳出局部最优解.几种典型函数的仿真实验表明,该算法在收敛速度... 相似文献
6.
提出了一种考虑可能区域和智能搜索相结合的无线传感器网络节点定位算法。该算法首先利用各个锚节点到未知节点的距离确定未知节点的可能区域,然后利用微粒群算法(particle swarm optimization, PSO)搜索出落在可能区域内的符合条件的结果,最后取符合条件的结果的均值作为未知节点的估计位置。实验结果表明,该算法定位精度较高,并且具有很强的鲁棒性,相比于一般的定位算法(如最小二乘法),在测距误差为35%的情况下,其定位精度可以提高49%左右。 相似文献