首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
针对气井压力计测试方法测取节流器以下井段压力存在困难,回声仪测压方法有时测不准液面等问题,推导了具有节流效应影响的压力公式:由节流器上流油压与套压的变化关系,计算出积液深度,再从油套环空采用井深迭代方法,得到一种新的计算井底压力的方法.通过气田现场应用表明:该方法与回声仪测压方法的静压平均相对误差小于2%,流压平均相对误差小于6%;与压力计测试方法的静压和流压平均相对误差分别小于9%和4%.该方法能比较方便和准确地得到气井井底压力,是气田动态监测的一种可靠手段.  相似文献   

2.
依据井筒压力与气体密度和湿度之间的函数关系,采用密度迭代法,以井口套压为起点自上而下迭代至井底,计算出井底流压。选择有实际关井测压数据的8口井,将不考虑天然气湿度条件下(干气)用密度迭代法计算的井底流压与实际测压值对比,平均相对误差仅为4.89%;考虑湿度对井底流压的影响,计算了不同气体湿度下的井底流压,与实际测压值之间最大误差为1.369 1%。将用密度迭代法、经验公式及RTA法计算的井底流压与实际测压值进行比较,发现前者的误差最小,而且使用该方法能在不影响气井正常生产的情况下精确计算气井的井底流压,适用于气井整个生产历程中的井底流压计算。  相似文献   

3.
煤层气井在产气之前需要进行排水降压作业,同心管气举通过在生产油管中加入小油管,可以为气举提供注气通道的同时,又不影响油套环空作为气井的产气通道。结合固相颗粒在垂直气液两相流中的运移模型,给出了同心管气举条件下,不同粒径煤粉颗粒排出井筒所需要的气液流速条件。通过同心管环空气液两相流压力计算,给出了同心管气举阀安装位置的设计方法,并结合煤层气井排采过程中煤层气井的生产动态特征,给出了注气量的确定方法。对同心管气举排水工艺进行了现场试验,分析了试验气井的实际排采曲线,证明同心管气举排水工艺的可行性,以及气举参数设计的合理性。通过计算排采阶段同心管的气举效率,表明该工艺在整个试验阶段可以保持较高的举升效率。根据煤粉排出的临界条件,判断以及预测煤粉在井底沉积的可能性和时间。  相似文献   

4.
针对井下节流天然气井需要通过判断井筒积液严重程度来优化采气工艺的情况,提出了一种计算井下节流气井无积液条件下的理论产气量,并与实际产气量进行对比来判断井筒积液程度的方法。假设气井无积液条件下,根据油套环空静气柱模型、油管Beggs&Brill管流模型,由油压、套压计算节流器进、出口压力;通过设定气井产气量,结合节流器进、出口压力和节流器嘴径计算得到理论产气量。将254组实际产气量与理论产气量的比值与套压降速率、产气量月递减率、泡排工艺实施比例及实施效果等数据进行对比。结果表明:当实际产气量与理论产气量的比值小于0.75时,井筒存在严重积液,诊断符合率为91.6%。  相似文献   

5.
连续气举是产水量大的水平气井重要排采措施,针对现场正举和反举的特点,为揭示气田开发过程中反举条件下油管和正举条件下油套环空内的气液两相流流动规律,分别用水和空气在套管内径为127.3 mm、油管外径为73 mm的油套环空和内径为60 mm的油管内进行了井筒气液两相管流模拟实验,对低压积液气井气举时井筒流动规律进行了研究分析,分析了井筒中气相和液相的体积流量、注气方式等因素对井筒压降和持液率的影响。结果表明:在相同气、液流量条件下,反举时的持液率比正举持液率小;不同气举方式下的井筒压降随注气量的增加呈不同的变化趋势,反举时的井筒压降比同工况下正举的压降大,对于产液量较大且有一定地层能量的气井,推荐采用反举方式进行气井排水采气。  相似文献   

6.
在砾石充填井筛套环空砾石层的压降计算中 ,将液流简化为单向流或径向流计算得到的压降与实际值相差较大 ,描述这种发散流的Yildiz等人的模型比较复杂 ,且求解困难 ,不便于应用。因此 ,提出一种砾石层压降的简化计算方法 ,即将环空砾石层中的发散流简化为锥形流 ,根据Forchheimer方程导出计算压降的新公式。计算结果表明 ,锥形流模型与Yildiz等人的模型计算结果非常接近 ,并且应用更简便。分析结果还表明 ,油井产量以及射孔孔径和孔密度是影响砾石层压降的重要因素。  相似文献   

7.
筛套环空砾石层压降的简化计算模型   总被引:15,自引:2,他引:13  
在砾石充填井筛套环空砾石层的压降计算中,将液流简化为单向流或径向流计算得到的压降与实际值相差较大,描述这种发散流的Yildiz等人的模型复杂,且求解困难,不便于应用。因此,提出一种砾石层压降的简化计算方法,即将环空砾石层中的发散流简化为锥形流,根据Forchheimer方程导出计算压降的新公式。计算结果表明,锥形流模型与Yildiz等人的模型计算结果非常接近,并且应用更简便。分析结果还表明,油井产量以及射孔孔径和孔密度是影响砾石层压降的重要因素。  相似文献   

8.
利用模拟实验装置,结合粒子图像测速法(particle image velocity measurement,PIV)和瞬态压力测量系统,对石油工程中偏心油套环空内失速液流水击的流场流线、速度、涡量特性以及压力场特性进行了分析.结果表明:当偏心油套环空内失速液流产生水击,油套环空内流速衰减至最小时油管内流速最大,偏心距的增加会使环空小流道内流速衰减速度加大,而油管内液流的加速过快可使偏心油套环空和油管内产生两个水击的共振,危害油套环空.水击发生初始时环空小流道处内外壁水击压力明显不等;偏心距小,环空内壁和油管内壁的压力差大;偏心距大,油管内壁压力值变化剧烈,这两种情况都可能造成油管损坏,实际工程中需要注意.  相似文献   

9.
DST测试期间,为了完成测试任务,通常通过油套环空加压的方式来控制井下不同目的的测试工具。对于高温高压高产井,由于地层压力高,环空使用的液体的密度可能比较高,而测试管柱内,液体组分比较复杂不能简单的使用原油的密度进行计算。为了防止测试管柱的挤毁,文中提出了使用不同油嘴下的井口压力值,测试产量,关井压力恢复过程中的井口压力以及流体性质计算测试期间井底流压,测试管柱内外压,以及防止测试管柱被挤毁而需要施加的最小的井口回压的计算公式。通过使用A油田2口井的DST的测试数据,进行了验证,公式的精度可以满足现场作业的要求。  相似文献   

10.
针对肯基亚克油田盐下石炭系油藏低压高产深井因地层压力保持度低导致停产的复产难题,分析了常规多级气举的下入深度技术受限原因,创新性的提出将连续油管速度管柱和气举技术结合应用于盐下油田井深超过4 000 m的采油井,效果良好,在国内外属首次使用,并获得了哈萨克斯坦国家专利(№1951 от 22,12,2016г)。理论上,连续油管下放越深,井底流压越低,较大的生产压差有利于地层出液可有效释放油井潜能,同时配合气举得到较好的排采效果。目前盐下注气管网压力到配气间114 atm,模拟计算得出连续油管悬挂深度>4 000 m,正好满足目的井层的排采需求,并通过连续油管入井试验得到了验证。此技术带压作业,不污染储层,同时解决了压井后产量恢复较难的问题,该技术的应用降低了井底流压,排出了井底及近井地带高含水积液,清除了近井地带堵塞,单井复产后增油效果良好,并可持续安全生产。该技术获得现场成功应用,4口井累积增产原油42 627 t,有效改善了因地层压力低或是常规气举无法复产等原因导致的停产井。该技术的成功应用获得了良好增油效果和经济效益,为油价持续不振的情况下降本增效提供了技术突破与保障。  相似文献   

11.
为了准确得到非均质储层水平气井井筒内压力分布情况,结合水平井筒变质量流的压降公式、裂缝渗流的产能公式和产剖测试分析.建立了水平气井非均匀产剖储层-井筒压降耦合模型,通过微元法将非均质储层转化为均质储层求解模型.该模型将井筒水平段压降分为环空回流段和套管变质量流段两部分压降进行计算,同时考虑了摩擦压降、加速度压降和重力压...  相似文献   

12.
随着冬季对天然气需求的持续增加,对储气库的调峰能力提出了严峻的考验,注采井作为连接地面与地下的通道,井筒温度受注采周期的影响发生变化,如何准确地预测井筒内温度变化,对于预测环空压力、保证油管和套管安全、水泥环密封性和储气库运行安全至关重要。根据流体力学中质量守恒定律、能量守恒定律和动量定理,将气体的压强、温度、密度和流速进行耦合分析,利用显式四阶Runge-Kutta数值求解方法,输出油管内气体不同深度的流动参数,并对影响油管内气体温度的敏感性因素进行分析,得到了储气库注气过程、采气过程、关井阶段温度分布规律。结果表明:注气过程井底处温度受注气量影响较大,注气时间和注气压力对井底温度影响较小;在采气过程,井口处气体温度随采气量的增加而增大,油管内气体压力由井底到井口逐渐减小,并且随着采气量的增加,减小趋势越明显;在关井初期,油管内气体温度变化速率较大,随着关井时间的持续增加,油管内气体温度逐渐趋于地层温度,并且越接近于井口气体温度变化速率越明显。  相似文献   

13.
在稠油开采过程中,准确地预测井筒温度是选择合适的采油工艺,防止稠油结蜡增黏的基础。采用对流-扩散模型计算油管与抽油杆之间的环空内的流体传热,建立了稠油井井筒加热温度场的二维非稳态数学模型;并使用控制容积法实现模型的数值求解,模拟结果和现场实测井筒温度吻合度较好。通过模型计算,分析了电加热生产和热流体循环加热过程中影响井筒温度的诸多因素。结果表明加热流体的入口温度和流量对井筒温度场影响最明显、热流体的掺入深度存在最优范围、空心杆循环热流体的加热方法优于套管掺液,对提高稠油油井采油效率具有指导意义。  相似文献   

14.
综合考虑钻完井和投产采气过程未固井段套管强度和稳定性问题,提出一种海上油气井油层套管井口装定载荷设计方法,建立多层管柱耦合系统计算力学模型,确定钻完井过程套管轴向载荷计算方法,综合考虑温度场、压力场和压力端部效应给出投产采气后套管轴向载荷计算公式,并以中国南海某气田为例进行油层套管井口装定载荷设计。结果表明:套管强度不是限制海上油气井油层套管井口装定载荷设计的因素,投产采气过程底部油层套管的稳定性是油层套管井口装定载荷设计的重要因素;当设计极值产气量小于特定值时,油层套管井口装定载荷为油层套管未固井段重力,当设计极值产气量大于特定值时,随着设计极值产气量的增大,油层套管井口装定载荷增大,但增大的幅值逐渐减小。  相似文献   

15.
井筒高温流体在生产过程中,向密闭环空传热引起的环空圈闭压力上升现象是深水油气开采面临的主要问题之一。为了保障井筒安全,结合深水油气井的生产实际,基于拟稳态传热以及耦合压力体积的环空压力计算方法,建立了多环空圈闭压力预测模型。根据破裂盘工作原理,建立了由内向外和由外向内的破裂盘打开阀值确定方法。以西非某井为例,对生产过程中井筒温度和环空压力进行预测。套管强度校核结果表明,正常生产过程中,表层套管和技术套管存在胀破风险;在生产套管的环空泄压或者掏空后,生产套管存在挤毁风险。采用破裂盘技术后,各层套管均满足校核的要求。因此,破裂盘技术可有效实现套管的保护,对深水油气资源安全开采具有重要意义。  相似文献   

16.
针对目前常用定质量流井筒压力计算模型不适用于产层段井筒长、从底部至顶部质量流量变化大的巨厚气藏气井的问题,通过耦合气井流入状态和井筒管流,建立了巨厚气藏气井产层段变质量流井筒压力计算模型,并通过实例气井进行验证,同时将该模型应用于气井产能评价。结果表明:变质量流模型计算的井筒压力值比定质量流模型小,两者之间差异随产气量和产层段长度增加而增大;在产层段不同深度处,变质量流模型计算误差均小于2%,计算精度较高。该变质量流模型能较精确地计算井筒压力值,进而可以有效解决气井产能测试遇阻无法获得井筒压力、井筒压力折算值不准确易导致产能指示曲线负异常等问题。该研究对巨厚气藏气井井筒压力分布计算和产能评价能够提供强有力技术支撑。  相似文献   

17.
 西气东输的气源井以高温高压气井为主,气井生产依赖于井底温度和压力,生产过程中温度起着重要的作用。为了确保高温高压气井的正常生产,必须对井筒温度压力进行深入研究。井筒压力的研究已有较为成熟的结果,但对井底温度的研究还很不成熟,尤其是井身结构对井筒温度的影响国内外尚未见报道。本文基于Ramey经典井筒温度计算模型建立了两种考虑复杂井身结构井的井筒温度分布计算模型,即在复杂井筒条件下从井底到井口的温度计算模型和从井口到井底的温度计算模型。通过与实测资料对比,给出了计算模型的误差对比,分析了井身结构对井筒温度分布计算的影响。研究结果表明,从井底到井口的温度分布模型计算结果优于从井口到井底的温度分布模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号