首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Directional cell migration is required for proper embryogenesis, immunity, and healing, and its underpinning regulatory mechanisms are often hijacked during diseases such as chronic inflammations and cancer metastasis. Studies on migratory epithelial tissues have revealed that cells can move as a collective group with shared responsibilities. First thought to be restricted to proper epithelial cell types able to maintain stable cell–cell junctions, the field of collective cell migration is now widening to include cooperative behavior of mesenchymal cells. In this review, we give an overview of the mechanisms driving collective cell migration in epithelial tissues and discuss how mesenchymal cells can cooperate to behave as a collective in the absence of bona fide cell–cell adhesions.  相似文献   

2.
In this study we analyzed the proteolytic activity of MMP-19 and its impact on keratinocyte migration. In the HaCaT keratinocyte cell line overexpressing wild-type MMP-19 (HaCaT-WT), transmigration through fibrin and type IV collagen matrices was significantly increased compared to cells harboring a catalytically inactive mutant (HaCaT-EA). Studying the expression of MMP-19 in early stages of squamous cell cancer (SCC), we found co-localization of MMP-19 and laminin 5 at the invading tumor front but not in suprabasal epidermis of the tumor. Examination of laminin 5 processing revealed increased processing of the 2 chain in the medium and matrix of HaCaT-WT cells and degradation by recombinant human MMP-19 to 105-kDa and 80-kDa fragments. Parental HaCaT grown on the matrix of HaCaT-WT and HaCaT-EA cells displayed differential tyrosine phosphorylation. Using integrin blocking and stimulating antibodies we could attribute these differences to a shift from 4-integrin-dependent signaling on the HaCaT-EA matrix toward 3-integrin-dependent signaling on the HaCaT-WT matrix. As a consequence, parental HaCaT showed increased migration on the matrix of HaCaT-WT cells. These data suggest that the MMP-19-dependent processing of the 2 chains leads to the integrin switch favoring epithelial migration and that MMP-19 actively participates in the early stages of SCC invasion.Received 29 October 2004; received after revision 7 December 2004; accepted 17 January 2005  相似文献   

3.
Summary The migration of cerebellar granule cells from the external granular layer to the internal granular layer is mediated by the radial Bergmann glial fiber. Recent works have shown that cell adhesion molecules, extra-cellular matrix proteins and proteolytic enzymes or their activators are involved in this process. Immuno-localization studies showed differential temporal and spatial expression patterns of different adhesion molecules, their isoforms, and post-translational modification during different stages of granule cell migration. Functional perturbation experiments using cerebellar explant cultures demonstrated that several adhesion molecules as well as plasminogen activator are involved in granule cell migration and are required in different stages. Other systems used to study granule cell migration including dissociated microwell cultures and granule cell deficient mouse mutants are discussed in the context of adhesion molecules. The results accumulated so far suggest that the migration of granule cells is a complex process in which the cooperation of a group of molecules with different functions, some for adhesion some for de-adhesion, are required to fulfill the different needs during the migratory course.  相似文献   

4.
C M Chuong 《Experientia》1990,46(9):892-899
The migration of cerebellar granule cells from the external granular layer to the internal granular layer is mediated by the radical Bergmann glial fiber. Recent works have shown that cell adhesion molecules, extra-cellular matrix proteins and proteolytic enzymes or their activators are involved in this process. Immuno-localization studies showed differential temporal and spatial expression patterns of different adhesion molecules, their isoforms, and post-translational modification during different stages of granule cell migration. Functional perturbation experiments using cerebellar explant cultures demonstrated that several adhesion molecules as well as plasminogen activator are involved in granule cell migration and are required in different stages. Other systems used to study granule cell migration including dissociated microwell cultures and granule cell deficient mouse mutants are discussed in the context of adhesion molecules. The results accumulated so far suggest that the migration of granule cells is a complex process in which the cooperation of a group of molecules with different functions, some for adhesion some for de-adhesion, are required to fulfill the different needs during the migratory course.  相似文献   

5.
Mitochondria are highly dynamic and functionally versatile organelles that continuously fragment and fuse in response to different physiological needs of the cell. The list of proteins that strictly regulate the morphology of these organelles is constantly growing, adding new players every day and new pieces to the comprehension and elucidation of this complex machinery. The structural complexity of mitochondria is only paralled by their functional versatility. Indeed, changes in mitochondria shape play critical roles in vertebrate development programmed cell death and in various processes of normal cell physiology, such as calcium signaling, reactive oxygen species production, and lifespan. Here, we present the latest findings on the regulation of mitochondrial dynamics and some of their physiological roles, focusing on cell migration. In cells where migration represents a crucial function in their physiology, such as T and tumoral metastatic cells, mitochondria need to be fragmented and recruited to specific subcellular regions to make movement possible. In depth analysis of this role of mitochondrial dynamics should help in identifying potential targeted therapy against cancer or in improving the immune system’s efficiency.  相似文献   

6.
Dysfunction of the mitochondrial respiratory chain has been recognised as a cause of human disease for over 30 years. Advances in the past 10 years have led to a better understanding of the genetics and molecular pathogenesis of many of these disorders. Over 100 primary defects in mitochondrial DNA (mtDNA) are now implicated in the pathogenesis of a group of disorders which are collectively known as the mitochondrial encephalomyopathies, and which most frequently involve skeletal muscle and/or the central nervous system. Although impaired oxidative phosphorylation is likely to be the final common pathway leading to the cellular dysfunction associated with such mtDNA mutations, the complex relationship between genotype and phenotype remains largely unexplained. Most of the genes which encode the respiratory chain reside in the nucleus, yet only five nuclear genes have been implicated in human respiratory chain diseases. There is evidence that respiratory chain dysfunction is present in common neurological diseases such as Parkinson's disease and Huntington's disease. The precise cause of this respiratory chain dysfunction and its relationship to the disease process are unclear. This review focuses upon respiratory chain disorders associated with primary defects in mtDNA.  相似文献   

7.
8.
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3–5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.  相似文献   

9.
Recent evidence indicates that cell death can be induced through multiple mechanisms. Strikingly, the same death signal can often induce apoptotic as well as non-apoptotic cell death. For instance, inhibition of caspases often converts an apoptotic stimulus to one that causes necrosis. Because a dedicated molecular circuitry distinct from that controlling apoptosis is required for necrotic cell injury, terms such as “programmed necrosis” or “necroptosis” have been used to distinguish stimulus-dependent necrosis from those induced by non-specific traumas (e.g., heat shock) or secondary necrosis induced as a consequence of apoptosis. In several experimental models, programmed necrosis/necroptosis has been shown to be a crucial control point for pathogen- or injury-induced inflammation. In this review, we will discuss the molecular mechanisms that regulate programmed necrosis/necroptosis and its biological significance in pathogen infections, drug-induced cell injury, and trauma-induced tissue damage.  相似文献   

10.
Galectins are a taxonomically widespread family of glycan-binding proteins, defined by at least one conserved carbohydrate-recognition domain with a canonical amino acid sequence and affinity for beta-galactosides. Because of their anti-adhesive as well as pro-adhesive extracellular functions, galectins appear to be a novel class of adhesion-modulating proteins collectively known as matricellular proteins (which include thrombospondin, SPARC, tenascin, hevin, and disintegrins). Accordingly, galectins can display de-adhesive effects when presented as soluble proteins to cells in a strong adhesive state. In this context, the de-adhesive properties of galectins should be considered as physiologically relevant as the proadhesive effects of these glycan-binding proteins. This article focuses on the roles of mammalian galectins in cell adhesion, spreading, and migration, and the crossregulation of these functions. Although careful attention should be paid when examining individual galectin functions due to overlapping distributions, these intriguing glycan-binding proteins offer promising possibilities for the treatment and intervention of a wide variety of pathological processes, including cancer, inflammation, and autoimmunity.  相似文献   

11.
In this study, we performed a comprehensive analysis of the effect of CCN1 on the migration of human immune cells. The molecule CCN1, produced by fibroblasts and endothelial cells, is considered as an important matrix protein promoting tissue repair and immune cell adhesion by binding various integrins. We recently reported that CCN1 therapy is able to suppress acute inflammation in vivo. Here, we show that CCN1 binds to various immune cells including T cells, B cells, NK cells, and monocytes. The addition of CCN1 in vitro enhances both actin polymerization and transwell migration. Prolonged incubation with CCN1, however, results in the inhibition of migration of immune cells by a mechanism that involves downregulation of PI3Kγ, p38, and Akt activation. Furthermore, we observed that immune cells themselves produce constitutively CCN1 and secretion is induced by pro-inflammatory stimuli. In line with this finding, patients suffering from acute inflammation had enhanced serum levels of CCN1. These findings extend the classical concept of CCN1 as a locally produced cell matrix adhesion molecule and suggest that CCN1 plays an important role in regulating immune cell trafficking by attracting and locally immobilizing immune cells.  相似文献   

12.
13.
When a constraint is removed, confluent cells migrate directionally into the available space. How the migration directionality and speed increase are initiated at the leading edge and propagate into neighboring cells are not well understood. Using a quantitative visualization technique—Particle Image Velocimetry (PIV)—we revealed that migration directionality and speed had strikingly different dynamics. Migration directionality increases as a wave propagating from the leading edge into the cell sheet, while the increase in cell migration speed is maintained only at the leading edge. The overall directionality steadily increases with time as cells migrate into the cell-free space, but migration speed remains largely the same. A particle-based compass (PBC) model suggests cellular interplay (which depends on cell–cell distance) and migration speed are sufficient to capture the dynamics of migration directionality revealed experimentally. Extracellular Ca2+ regulated both migration speed and directionality, but in a significantly different way, suggested by the correlation between directionality and speed only in some dynamic ranges. Our experimental and modeling results reveal distinct directionality and speed dynamics in collective migration, and these factors can be regulated by extracellular Ca2+ through cellular interplay. Quantitative visualization using PIV and our PBC model thus provide a powerful approach to dissect the mechanisms of collective cell migration.  相似文献   

14.
15.
Cell lineage and cell migration in the developing cerebral cortex   总被引:4,自引:0,他引:4  
Summary Modern techniques which trace lineages of individual progenitor cells have provided some clues about the processes that determine cell fate in the brain, and have also given us some information about migratory patterns of clonally related cells. In many parts of the central nervous system, progenitors are multipotent; single clones can contain multiple neuronal types or even mixtures of neurons and glia. In addition, one can observe a wide distribution in clone size, even when marking is done in a narrow time window. This suggests that progenitor cells may be fairly plastic and responsive to environmental signals. In the developing cortex, clonally related cells are initially grouped near each other, as in the retina and tectum. However, the subsequent migration of these cells from the ventricular zone to the cortex along glial fibers is accompanied by a progressive dispersion of clonally related neurons.  相似文献   

16.
Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration.  相似文献   

17.
Mechanotransduction encompasses the role of mechanical forces in controlling cell behavior by activating signal transduction pathways. Most forces at a cellular level are caused by myosin II, which contracts and cross-links actin. Myosin II-dependent forces are transmitted through the actin cytoskeleton to molecular endpoints that promote specific cellular outcomes, e.g., cell proliferation, adhesion, or migration. For example, most adhesive and migratory phenomena are mechanically linked by a molecular clutch comprised of mechanosensitive scaffolds. Myosin II activation and mechanosensitive molecular mechanisms are finely tuned and spatiotemporally integrated to coordinate morphogenetic events during development. Mechanical events dependent on myosin II also participate in tumor cell proliferation, invasion, and metastatic dissemination. Specifically, tumor cells alter the mechanical properties of the microenvironment to create favorable conditions for proliferation and/or dissemination. These observations position myosin II-dependent force generation and mechanotransduction at the crossroads between normal development and cancer.  相似文献   

18.
The chemokine CXCL8 is a powerful inducer of directional cell motility, primarily during inflammation. In this study, we found that CXCL8 stimulation led to paxillin phosphorylation in normal neutrophils, and that both CXCL8 receptors (CXCR1 and CXCR2) mediated CXCL8-induced paxillin phosphorylation. In CXCR2-transfected cells, the process depended on Gαi and Gαs coupling to CXCR2. Dominant negative (DN) paxillin increased CXCL8-induced adhesion and migration, indicating that endogenous paxillin keeps migration at submaximal levels. Furthermore, using activating antibodies to β1 integrins, analyses with focal adhesion kinase (FAK) DN variant (FRNK) and co-immunoprecipitations of FAK and paxillin, we found that β1 integrin ligation cooperates with CXCL8-induced stimulation, leading to FAK activation and thereafter to FAK-mediated paxillin phosphorylation. Our findings indicate that paxillin keeps directional motility at a restrained magnitude, and suggest that perturbations in its activation may lead to chemotactic imbalance and to pathological conditions associated with excessive or reduced leukocyte migration. R. Mintz, T. Meshel: These authors contributed equally to this work. Received 31 July 2008; received after revision 14 December 2008; accepted 16 December 2008  相似文献   

19.
Zusammenfassung Die Zellwanderung sowie die Zellvermehrung in den Krypten und auf den Zotten der Dünndarmwandung werden bei säugenden Mäusen mit dem Adulttier verglichen. Die scheinbar herabgesetzte Zellmigration ist auf das bei jungen Mäusen stattfindende Wachstum der Krypten und Zotten zurückzuführen, ist also nicht geringer als bei adulten Tieren.  相似文献   

20.
Crohn’s disease and ulcerative colitis are both associated with an increased risk of inflammation-associated colorectal carcinoma. Colitis-associated cancer (CAC) is one of the most important causes for morbidity and mortality in patients with inflammatory bowel diseases (IBD). Colitis-associated neoplasia distinctly differs from sporadic colorectal cancer in its biology and the underlying mechanisms. This review discusses the molecular mechanisms of CAC and summarizes the most important genetic alterations and signaling pathways involved in inflammatory carcinogenesis. Then, clinical translation is evaluated by discussing new endoscopic techniques and their contribution to surveillance and early detection of CAC. Last, we briefly address different types of concepts for prevention (i.e., anti-inflammatory therapeutics) and treatment (i.e., surgical intervention) of CAC and give an outlook on this important aspect of IBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号