首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 7 毫秒
1.
Polyubiquitin chains: functions, structures, and mechanisms   总被引:2,自引:1,他引:1  
Ubiquitin is a highly conserved 76-amino acid polypeptide that is found throughout the eukaryotic kingdom. The covalent conjugation of ubiquitin (often in the form of a polymer) to substrates governs a variety of biological processes ranging from proteolysis to DNA damage tolerance. The functional flexibility of this post-translational modification has its roots in the existence of a large number of ubiquitinating enzymes that catalyze the formation of distinct ubiquitin polymers, which in turn encode different signals. This review summarizes recent advances in the field with an emphasis on the non-canonical functions of polyubiquitination. We also discuss the potential mechanism of chain linkage specification as well as how structural disparity in ubiquitin polymers may be distinguished by ubiquitin receptors to translate the versatile ubiquitin signals into various cellular functions.  相似文献   

2.
The semaphorin proteins were identified originally as axonal guidance factors functioning during neuronal development. In addition to this function, several semaphorins play diverse roles outside the nervous system. The class 4 semaphorin CD100/Sema4D, which utilizes plexin-B1 and CD72 as receptors, exerts important biological effects on a variety of cells, including the neuronal, epithelial and immune cells. Here, we review recent advances exploring the molecular mechanisms governing the biological functions of CD100/Sema4D.Received 1 July 2003; received after revision 25 July 2003; accepted 29 July 2003  相似文献   

3.
The integrins are a large family of heterodimeric cell adhesion receptors mediating cell-matrix and cell-cell adhesion. They seem to play a central role in cell migration and invasion and are therefore essential in processes such as healing of tissue injuries and the progression of human cancer. Integrins function in cell invasion by mediating cell movement on matrix molecules and also by regulating the expression of matrix-degrading enzymes, namely the matrix metalloproteinases. Here we review recent findings on the mechanisms by which integrins regulate matrix degradation. A novel, multistep model of integrin-guided collagen degradation is proposed.  相似文献   

4.
Natural small-molecule inhibitors of actin cytoskeleton dynamics have long been recognized as valuable molecular probes for dissecting complex mechanisms of cellular function. More recently, their potential use as chemotherapeutic drugs has become a focus of scientific investigation. The primary focus of this review is the molecular mechanism by which different actin-targeting natural products function, with an emphasis on structural considerations of toxins for which high-resolution structural information of their interaction with actin is available. By comparing the molecular interactions made by different toxin families with actin, the structural themes of those that alter filament dynamics in similar ways can be understood. This provides a framework for novel synthetic-compound designs with tailored functional properties that could be applied in both research and clinical settings. Received 6 April 2006; received after revision 31 May 2006; accepted 19 June 2006  相似文献   

5.
The Type-I bone morphogenetic protein receptors (BMPRs), BMPR1A and BMPR1B, present the highest sequence homology among BMPRs, suggestive of functional similitude. However, sequence elements within their extracellular domain, such as signal sequence or N-glycosylation motifs, may result in differential regulation of biosynthetic processing and trafficking and in alterations to receptor function. We show that (i) BMPR1A and the ubiquitous isoform of BMPR1B differed in mode of translocation into the endoplasmic reticulum; and (ii) BMPR1A was N-glycosylated while BMPR1B was not, resulting in greater efficiency of processing and plasma membrane expression of BMPR1A. We further demonstrated the importance of BMPR1A expression and glycosylation in ES-2 ovarian cancer cells, where (i) CRISPR/Cas9-mediated knockout of BMPR1A abrogated BMP2-induced Smad1/5/8 phosphorylation and reduced proliferation of ES-2 cells and (ii) inhibition of N-glycosylation by site-directed mutagenesis, or by tunicamycin or 2-deoxy-d-glucose treatments, reduced biosynthetic processing and plasma membrane expression of BMPR1A and BMP2-induced Smad1/5/8 phosphorylation.  相似文献   

6.
Recent findings concerning human slow wave sleep (hSWS-stages 3+4; delta EEG activity) are critically reviewed. Areas covered include the significance of the first hSWS cycle; hSWS in extended sleep; relationship between hSWS, prior wakefulness and sleep loss; hSWS influence on sleep length; problems with hSWS deprivation; influence of the circadian rhythm; individual differences in hSWS, especially, age, gender and constitutional variables such as physical fitness and body composition. Transient increases in hSWS can be produced by increasing both the quality and quantity of prior wakefulness, with an underlying mechanism perhaps relating to the waking level of brain metabolism. Whilst there may also be thermoregulatory influences on hSWS, hypotheses that energy conservation and brain cooling are major roles for hSWS are debatable. hSWS seems to offer some form of cerebral recovery, with the prefrontal cortex being particularly implicated. The hSWS characteristics of certain forms of major psychiatric disorders may well endorse this prefrontal link.  相似文献   

7.
J Horne 《Experientia》1992,48(10):941-954
Recent findings concerning human slow wave sleep (hSWS-stages 3 + 4; delta EEG activity) are critically reviewed. Areas covered include the significance of the first hSWS cycle; hSWS in extended sleep; relationship between hSWS, prior wakefulness and sleep loss; hSWS influence on sleep length; problems with hSWS deprivation; influence of the circadian rhythm; individual differences in hSWS, especially, age, gender and constitutional variables such as physical fitness and body composition. Transient increases in hSWS can be produced by increasing both the quality and quantity of prior wakefulness, with an underlying mechanism perhaps relating to the waking level of brain metabolism. Whilst there may also be thermoregulatory influences on hSWS, hypotheses that energy conservation and brain cooling are major roles for hSWS are debatable. hSWS seems to offer some form of cerebral recovery, with the prefrontal cortex being particularly implicated. The hSWS characteristics of certain forms of major psychiatric disorders may well endorse this prefrontal link.  相似文献   

8.
Summary In the rat endometrium, resident macrophages and exudate phagocytes ensure proteolysis by means of phagocytosis, macro-and micropinocytosis. Using exogenous tracer particles no ultrastructural evidence could be obtained for the occurrence of endometrial prelymphatics. It is suggested that the free tissue fluid may be drained via the fenestrated (probably venous) blood capillaries.Supported by a grant from the Nationaal Fonds voor Wetenschappelijk Onderzoek-Fonds voor Geneeskundig Wetenschappelijk Onderzoek (Belgium).  相似文献   

9.
In the rat endometrium, resident macrophages and exudate phagocytes ensure proteolysis by means of phagocytosis, macro- and micropinocytosis. Using exogenous tracer particles no ultrastructural evidence could be obtained for the occurrence of endometrial prelymphatics. It is suggested that the free tissue fluid may be drained via the fenestrated (probably venous) blood capillaries.  相似文献   

10.
11.
Résumé Le requin n'a pas de vrais vaisseaux lymphatiques, mais ses capillaires sanguins sont fénestrés. On suppose que les grandes molécules sont éliminées des tissus par ces fenestrae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号