首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We have used large-scale insertional mutagenesis to identify functional landmarks relevant to cancer in the recently completed mouse genome sequence. We infected Cdkn2a(-/-) mice with Moloney murine leukemia virus (MoMuLV) to screen for loci that can participate in tumorigenesis in collaboration with loss of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF. Insertional mutagenesis by the latent retrovirus was synergistic with loss of Cdkn2a expression, as indicated by a marked acceleration in the development of both myeloid and lymphoid tumors. We isolated 747 unique sequences flanking retroviral integration sites and mapped them against the mouse genome sequence databases from Celera and Ensembl. In addition to 17 insertions targeting gene loci known to be cancer-related, we identified a total of 37 new common insertion sites (CISs), of which 8 encode components of signaling pathways that are involved in cancer. The effectiveness of large-scale insertional mutagenesis in a sensitized genetic background is demonstrated by the preference for activation of MAP kinase signaling, collaborating with Cdkn2a loss in generating the lymphoid and myeloid tumors. Collectively, our results show that large-scale retroviral insertional mutagenesis in genetically predisposed mice is useful both as a system for identifying genes underlying cancer and as a genetic framework for the assignment of such genes to specific oncogenic pathways.  相似文献   

2.
Mcm4 (minichromosome maintenance-deficient 4 homolog) encodes a subunit of the MCM2-7 complex (also known as MCM2-MCM7), the replication licensing factor and presumptive replicative helicase. Here, we report that the mouse chromosome instability mutation Chaos3 (chromosome aberrations occurring spontaneously 3), isolated in a forward genetic screen, is a viable allele of Mcm4. Mcm4(Chaos3) encodes a change in an evolutionarily invariant amino acid (F345I), producing an apparently destabilized MCM4. Saccharomyces cerevisiae strains that we engineered to contain a corresponding allele (resulting in an F391I change) showed a classical minichromosome loss phenotype. Whereas homozygosity for a disrupted Mcm4 allele (Mcm4(-)) caused preimplantation lethality, Mcm(Chaos3/-) embryos died late in gestation, indicating that Mcm4(Chaos3) is hypomorphic. Mutant embryonic fibroblasts were highly susceptible to chromosome breaks induced by the DNA replication inhibitor aphidicolin. Most notably, >80% of Mcm4(Chaos3/Chaos3) females succumbed to mammary adenocarcinomas with a mean latency of 12 months. These findings suggest that hypomorphic alleles of the genes encoding the subunits of the MCM2-7 complex may increase breast cancer risk.  相似文献   

3.
Huntington disease (HD), an autosomal dominant, progressive neurodegenerative disorder, is caused by an expanded CAG repeat sequence leading to an increase in the number of glutamine residues in the encoded protein. The normal CAG repeat range is 5-36, whereas 38 or more repeats are found in the diseased state; the severity of disease is roughly proportional to the number of CAG repeats. HD shows anticipation, in which subsequent generations display earlier disease onsets due to intergenerational repeat expansion. For longer repeat lengths, somatic instability of the repeat size has been observed both in human cases at autopsy and in transgenic mouse models containing either a genomic fragment of human HD exon 1 (ref. 9) or an expanded repeat inserted into the endogenous mouse gene Hdh (ref. 10). With increasing repeat number, the protein changes conformation and becomes increasingly prone to aggregation, suggesting important functional correlations between repeat length and pathology. Because dinucleotide repeat instability is known to increase when the mismatch repair enzyme MSH2 is missing, we examined instability of the HD CAG repeat by crossing transgenic mice carrying exon 1 of human HD (ref. 16) with Msh2-/- mice. Our results show that Msh2 is required for somatic instability of the CAG repeat.  相似文献   

4.
Most cancers have multiple chromosomal rearrangements; the molecular mechanisms that generate them remain largely unknown. Mice carrying a heterozygous missense change in one of the DNA-binding domains of Rpa1 develop lymphoid tumors, and their homozygous littermates succumb to early embryonic lethality. Array comparative genomic hybridization of the tumors identified large-scale chromosomal changes as well as segmental gains and losses. The Rpa1 mutation resulted in defects in DNA double-strand break repair and precipitated chromosomal breaks as well as aneuploidy in primary heterozygous mutant mouse embryonic fibroblasts. The equivalent mutation in yeast is hypomorphic and semidominant and enhanced the formation of gross chromosomal rearrangements in multiple genetic backgrounds. These results indicate that Rpa1 functions in DNA metabolism are essential for the maintenance of chromosomal stability and tumor suppression.  相似文献   

5.
6.
7.
8.
By analyzing genomic copy-number differences using high-resolution mouse whole-genome BAC arrays, we uncover substantial differences in regional DNA content between inbred strains of mice. The identification of these apparently common segmental polymorphisms suggests that these differences can contribute to genetic variability and pathologic susceptibility.  相似文献   

9.
Aniridia is a semidominant disorder in which development of the iris, lens, cornea and retina is disturbed. The mouse mutation Small eye (Sey), which has been proposed as a model for aniridia, results from defects in Pax-6, a gene containing paired-box and homeobox motifs that is specifically expressed in the developing eye and brain. To test the role of PAX6 in aniridia, we isolated human cDNA clones and determined the intron-exon structure of this gene. PAX6 spans 22 kilobases and is divided into 14 exons. Analysis of DNA from 10 unrelated aniridia patients revealed intragenic mutations in three familial and one sporadic case. These findings indicate that the human aniridia and murine Small eye phenotypes arise from homologous defects in PAX6.  相似文献   

10.
Minisatellites are tandemly repeated DNA sequences of 10-100-bp units. Some minisatellite loci are highly unstable in the human germ line, and structural analysis of mutant alleles has suggested that repeat instability results from a recombination-based process. To provide insights into the molecular mechanism of human minisatellite instability, we developed Saccharomyces cerevisiae strains carrying alleles of the most unstable human minisatellite locus, CEB1 (ref. 2). We observed that CEB1 is destabilized in meiosis, resulting in a variety of intra- and inter-allelic gains or losses of repeat units, similar to rearrangements described in humans. Using mutations affecting the initiation of recombination (spo11) or mismatch repair (msh2 pms1 ), we demonstrate that meiotic destabilization depends on the initiation of homologous recombination at nearby DNA double-strand break (DSBs) sites and involves a 'rearranged heteroduplex' intermediate. Most of the human and yeast data can be explained and unified in the context of DSB repair models.  相似文献   

11.
Angptl3 regulates lipid metabolism in mice.   总被引:27,自引:0,他引:27  
The KK obese mouse is moderately obese and has abnormally high levels of plasma insulin (hyperinsulinemia), glucose (hyperglycemia) and lipids (hyperlipidemia). In one strain (KK/San), we observed abnormally low plasma lipid levels (hypolipidemia). This mutant phenotype is inherited recessively as a mendelian trait. Here we report the mapping of the hypolipidemia (hypl) locus to the middle of chromosome 4 and positional cloning of the autosomal recessive mutation responsible for the hypolipidemia. The hypl locus encodes a unique angiopoietin-like lipoprotein modulator, which we named Allm1. It is identical to angiopoietin-like protein 3, encoded by Angptl3, and has a highly conserved counterpart in humans. Overexpression of Angptl3 or intravenous injection of the purified protein in KK/San mice elicited an increase in circulating plasma lipid levels. This increase was also observed in C57BL/6J normal mice. Taken together, these data suggest that Angptl3 regulates lipid metabolism in animals.  相似文献   

12.
Genomic alterations in cultured human embryonic stem cells   总被引:22,自引:0,他引:22  
Cultured human embryonic stem cell (hESC) lines are an invaluable resource because they provide a uniform and stable genetic system for functional analyses and therapeutic applications. Nevertheless, these dividing cells, like other cells, probably undergo spontaneous mutation at a rate of 10(-9) per nucleotide. Because each mutant has only a few progeny, the overall biological properties of the cell culture are not altered unless a mutation provides a survival or growth advantage. Clonal evolution that leads to emergence of a dominant mutant genotype may potentially affect cellular phenotype as well. We assessed the genomic fidelity of paired early- and late-passage hESC lines in the course of tissue culture. Relative to early-passage lines, eight of nine late-passage hESC lines had one or more genomic alterations commonly observed in human cancers, including aberrations in copy number (45%), mitochondrial DNA sequence (22%) and gene promoter methylation (90%), although the latter was essentially restricted to 2 of 14 promoters examined. The observation that hESC lines maintained in vitro develop genetic and epigenetic alterations implies that periodic monitoring of these lines will be required before they are used in in vivo applications and that some late-passage hESC lines may be unusable for therapeutic purposes.  相似文献   

13.
Cryptorchidism in mice mutant for Insl3.   总被引:23,自引:0,他引:23  
S Nef  L F Parada 《Nature genetics》1999,22(3):295-299
Impaired testicular descent (cryptorchidism) is one of the most frequent congenital abnormalities in humans, involving 2% of male births. Cryptorchidism can result in infertility and increases risk for development of germ-cell tumours. Testicular descent from abdomen to scrotum occurs in two distinct phases: the trans-abdominal phase and the inguino-scrotal phase. Currently, little is known about the factors that regulate the trans-abdominal phase of testicular descent. Leydig insulin-like hormone (Insl3) is a member of the insulin hormone superfamily expressed in the developing testis. We show here that mice mutant for Insl3 are viable, but exhibit bilateral cryptorchidism due to developmental abnormalities of the gubernaculum, resulting in abnormal spermatogenesis and infertility. Female homozygotes have impaired fertility associated with deregulation of the oestrus cycle. These findings reveal roles for Insl3 in the development of the urogenital tract and in female fertility. Insl3 may act as a hormone to regulate the growth and differentiation of the gubernaculum, thereby mediating intra-abdominal testicular descent.  相似文献   

14.
A C-->G nucleotide transition in exon 4 of PTPRC (encoding protein-tyrosine phosphatase receptor-type C, also known as CD45) was recently reported to be genetically associated with the development of multiple sclerosis (MS). We performed an extensive evaluation of this polymorphism using large family-based and case-control comparisons. Overall, we observed no evidence of genetic association between the PTPRC polymorphism and MS susceptibility or disease course.  相似文献   

15.
The relationship between the number of randomly accumulated mutations in a genome and fitness is a key parameter in evolutionary biology. Mutations may interact such that their combined effect on fitness is additive (no epistasis), reinforced (synergistic epistasis) or mitigated (antagonistic epistasis). We measured the decrease in fitness caused by increasing mutation number in the bacterium Salmonella typhimurium using a regulated, error-prone DNA polymerase (polymerase IV, DinB). As mutations accumulated, fitness costs increased at a diminishing rate. This suggests that random mutations interact such that their combined effect on fitness is mitigated and that the genome is buffered against the fitness reduction caused by accumulated mutations. Levels of the heat shock chaperones DnaK and GroEL increased in lineages that had accumulated many mutations, and experimental overproduction of GroEL further increased the fitness of lineages containing deleterious mutations. These findings suggest that overexpression of chaperones contributes to antagonistic epistasis.  相似文献   

16.
Sox9 induces testis development in XX transgenic mice.   总被引:18,自引:0,他引:18  
Mutations in SOX9 are associated with male-to-female sex reversal in humans. To analyze Sox9 function during sex determination, we ectopically expressed this gene in XX gonads. Here, we show that Sox9 is sufficient to induce testis formation in mice, indicating that it can substitute for the sex-determining gene Sry.  相似文献   

17.
Transition through telomere crisis is thought to be a crucial event in the development of most breast carcinomas. Our goal in this study was to determine where this occurs in the context of histologically defined breast cancer progression. To this end, we assessed genome instability (using fluorescence in situ hybridization) and other features associated with telomere crisis in normal ductal epithelium, usual ductal hyperplasia, ductal carcinoma in situ and invasive cancer. We modeled this process in vitro by measuring these same features in human mammary epithelial cell cultures during ZNF217-mediated transition through telomere crisis and immortalization. Taken together, the data suggest that transition through telomere crisis and immortalization in breast cancer occurs during progression from usual ductal hyperplasia to ductal carcinoma in situ.  相似文献   

18.
Maize is both an exciting model organism in plant genetics and also the most important crop worldwide for food, animal feed and bioenergy production. Recent genome-wide association and metabolic profiling studies aimed to resolve quantitative traits to their causal genetic loci and key metabolic regulators. Here we present a complementary approach that exploits large-scale genomic and metabolic information to predict complex, highly polygenic traits in hybrid testcrosses. We crossed 285 diverse Dent inbred lines from worldwide sources with two testers and predicted their combining abilities for seven biomass- and bioenergy-related traits using 56,110 SNPs and 130 metabolites. Whole-genome and metabolic prediction models were built by fitting effects for all SNPs or metabolites. Prediction accuracies ranged from 0.72 to 0.81 for SNPs and from 0.60 to 0.80 for metabolites, allowing a reliable screening of large collections of diverse inbred lines for their potential to create superior hybrids.  相似文献   

19.
Many quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, but few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. Transgenic mice have been successfully used to analyse well-characterized genes suspected of contributing to quantitative traits. Although this approach is powerful for examining one gene at a time, it can be impractical for surveying the large genomic intervals containing many genes that are typically associated with QTLs. To screen for genes contributing to an asthma QTL mapped to human chromosome 5q3 (refs 6,7), we characterized a panel of large-insert 5q31 transgenics based on studies demonstrating that altering gene dosage frequently affects quantitative phenotypes normally influenced by that gene. This panel of human YAC transgenics, propagating a 1-Mb interval of chromosome 5q31 containing 6 cytokine genes and 17 partially characterized genes, was screened for quantitative changes in several asthma-associated phenotypes. Multiple independent transgenic lines with altered IgE response to antigen treatment shared a 180-kb region containing 5 genes, including those encoding human interleukin 4 (IL4) and interleukin 13 (IL13 ), which induce IgE class switching in B cells. Further analysis of these mice and mice transgenic for mouse Il4 and Il13 demonstrated that moderate changes in Il4 and Il13 expression affect asthma-associated phenotypes in vivo. This functional screen of large-insert transgenics enabled us to identify genes that influence the QTL phenotype in vivo.  相似文献   

20.
Ulcerative colitis, a chronic inflammatory disease of the colon, is associated with a high risk of colorectal carcinoma that is thought to develop through genomic instability. We considered that the rapid cell turnover and oxidative injury observed in ulcerative colitis might accelerate telomere shortening, thereby increasing the potential of chromosomal ends to fuse, resulting in cycles of chromatin bridge breakage and fusion and chromosomal instability associated with tumor cell progression. Here we have used quantitative fluorescence in situ hybridization to compare chromosomal aberrations and telomere shortening in non-dysplastic mucosa taken from individuals affected by ulcerative colitis, either with (UC progressors) or without (UC non-progressors) dysplasia or cancer. Losses, but not gains, of chromosomal arms and centromeres are highly correlated with telomere shortening. Chromosomal losses are greater and telomeres are shorter in biopsy samples from UC progressors than in those from UC non-progressors or control individuals without ulcerative colitis. A mechanistic link between telomere shortening and chromosomal instability is supported by a higher frequency of anaphase bridges--an intermediate in the breakage and fusion of chromatin bridges--in UC progressors than in UC non-progressors or control individuals. Our study shows that telomere length is correlated with chromosomal instability in a precursor of human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号