首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Ethanol has a pharmacological profile similar to that of classes of drugs like benzodiazepines and barbiturates, which enhance GABAergic transmission in the mammalian CNS. Several lines of behavioral, electrophysiological and biochemical studies suggest that ethanol may bring about most of its effects by enhancing GABAergic transmission. Recently, ethanol at relevant pharmacological concentrations has been shown to enhance GABA-induced36Cl-fluxes in cultured spinal cord neurons, synaptoneurosomes and microsacs. These enhancing effects of ethanol were blocked by GABA antagonists. Ro15-4513, an azido analogue of classical BZ antagonist Ro15-1788, reversed most of the behavioral effects of ethanol and other effects involving36Cl-flux studies. The studies summarized below indicate that most of the pharmacological effects of ethanol can be related to its effects on GABAergic transmission.  相似文献   

2.
Summary Ro 4-1778/1 (1-(p-Chlorphenethyl)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline) showed in pharmacological tests distinct analgetic effects similar to those of codeine as well as some spasmolytic activity resembling that of papaverine, whereas its side effects were absent or at least considerably less pronounced than those known for codeine.  相似文献   

3.
The offspring of rats that voluntarily select larger quantities of alcohol are heavier consumers of alcohol than the offspring of rats that tend to avoid it. Such selective breeding, repeated over many generations, was used to develop the AA (Alko, Alcohol) line of rats which prefer 10% alcohol to water, and the ANA (Alko, Non-Alcohol) line of rats which choose water to the virtual exclusion of alcohol. In addition to demonstrating the likely role of genetic factors in alcohol consumption, these lines have been used to find behavioral, metabolic, and neurochemical correlates of differential alcohol intake. Some of the line differences that have been found involve the reinforcing effects of ethanol, the changes in consumption produced by alcohol deprivation and nutritional factors, the behavioral and adrenal monoamine reactions to mild stress, the development of tolerance, the accumulation of acetaldehyde during ethanol metabolism, and the brain levels of serotonin. It is hoped that these studies will lead to a better understanding of the genetically-determined mechanisms that influence the selection of alcohol.  相似文献   

4.
Summary The offspring of rats that voluntarily select larger quantities of alcohol are heavier consumers of alcohol than the offspring of rats that tend to avoid it. Such selective breeding, repeated over many generations, was used to develop the AA (Alko, Alcohol) line of rats which prefer 10% alcohol to water, and the ANA (Alko, Non-Alcohol) line of rats which choose water to the virtual exclusion of alcohol. In addition to demonstrating the likely role of genetic factors in alcohol consumption, these lines have been used to find behavioral, metabolic, and neurochemical correlates of differential alcohol intake. Some of the line differences that have been found involve the reinforcing effects of ethanol, the changes in consumption produced by alcohol deprivation and nutritional factors, the behavioral and adrenal monoamine reactions to mild stress, the development of tolerance, the accumulation of acetaldehyde during ethanol metabolism, and the brain levels of serotonin. It is hoped that these studies will lead to a better understanding of the genetically-determined mechanisms that influence the selection of alcohol.  相似文献   

5.
6.
Calpains are Ca2+-dependent intracellular proteases that play central roles in the post-translational processing of functional proteins. In mammals, calpain proteolytic systems comprise the endogenous inhibitor calpastatin as well as 15 homologues of the catalytic subunits and two homologues of the regulatory subunits. Recent pharmacological and gene targeting studies in experimental animal models have revealed the contribution of conventional calpains, which consist of the calpain-1 and -2 isozymes, to atherosclerotic diseases. During atherogenesis, conventional calpains facilitate the CD36-dependent uptake of oxidized low-density lipoprotein (LDL), and block cholesterol efflux through ATP-binding cassette transporters in lesional macrophages, allowing the expansion of lipid-enriched atherosclerotic plaques. In addition, calpain-6, an unconventional non-proteolytic calpain, in macrophages reportedly potentiates pinocytotic uptake of native LDL, and attenuates the efferocytic clearance of apoptotic and necrotic cell corpses from the lesions. Herein, we discuss the recent progress that has been made in our understanding of how calpain contributes to atherosclerosis, in particular focusing on macrophage cholesterol handling.  相似文献   

7.
Summary Acute administration in the mid-light phase of a number of antidepressant drugs of different pharmacological profiles elevated pineal and plasma melatonin (measured by radioimmunoassay). Following chronic treatment with the tricyclic antidepressant clomipramine, the elevation was significantly reduced. This may be an effect of reduced -adrenergic receptor sensitivity after chronic clomipramine administration, analogous to other findings of reduced -adrenergic receptor binding and reduced noradrenaline-sensitive adenylate-cyclase response.These collaborative studies were made possible by a Twinning Grant from the European Training Programme for Brain and Behaviour Research; J.A. was supported by the Medical Research Council of Great Britain. We thank M. Lichtsteiner for excellent technical assistance. This paper was written during a Fellowship of the Swiss Biomedical Research Foundation to A.W.-J. Hofmann-LaRoche AG, Basel kindly provided the 1-5HTP-ester (Ro 11-5940) and Ro 11-2465, CIBA-Geigy AG, Basel, the maprotiline, clomipramine, and imipramine, USV, New York, the desmethylimipramine.  相似文献   

8.
Summary The long-term consequences of neonatal exposure to triethyl lead, the putative neurotoxic metabolite of the anti-knock gasoline additive tetraethyl lead, were examined with respect to central nervous system (CNS) development. We presently report a series of studies in which exposure of neonatal rats to organic lead produces profound CNS damage in adulthood as indicated by dose-dependent, persistent behavioral hyperreactivity as well as dose-dependent, preferential, and permanent damage to the hippocampus. General morphological parameters of brain development were not altered. Pharmacological probes of neurotransmitter system integrity suggested a functional and dose-dependent relationship between this behavioral hyperreactivity and hippocampal damage via cholinergic, but not dopaminergic, pathways. Furthermore, these alterations were not accompanied by long-term alterations in motor activity and were not attributable to the presence of lead in adult neural tissue. Finally, these behavioral, anatomical, and pharmacological indices of developmental exposure to organic lead were dissociable from any effects of early undernutrition. These data collectively indicate that organolead compounds may pose a potent neurotoxic threat to the developing CNS.  相似文献   

9.
The lymphocyte-specific protein tyrosine kinase (Lck), which belongs to the Src kinase-family, is expressed in neurons of the hippocampus, a structure critical for learning and memory. Recent evidence demonstrated a significant downregulation of Lck in Alzheimer’s disease. Lck has additionally been proposed to be a risk factor for Alzheimer’s disease, thus suggesting the involvement of Lck in memory function. The neuronal role of Lck, however, and its involvement in learning and memory remain largely unexplored. Here, in vitro electrophysiology, confocal microscopy, and molecular, pharmacological, genetic and biochemical techniques were combined with in vivo behavioral approaches to examine the role of Lck in the mouse hippocampus. Specific pharmacological inhibition and genetic silencing indicated the involvement of Lck in the regulation of neuritic outgrowth. In the functional pre-established synaptic networks that were examined electrophysiologically, specific Lck-inhibition also selectively impaired the long-term hippocampal synaptic plasticity without affecting spontaneous excitatory synaptic transmission or short-term synaptic potentiation. The selective inhibition of Lck also significantly altered hippocampus-dependent spatial learning and memory in vivo. These data provide the basis for the functional characterization of brain Lck, describing the importance of Lck as a critical regulator of both neuronal morphology and in vivo long-term memory.  相似文献   

10.
Molecular and functional heterogeneity of GABAergic synapses   总被引:1,自引:1,他引:0  
Knowledge of the functional organization of the GABAergic system, the main inhibitory neurotransmitter system, in the CNS has increased remarkably in recent years. In particular, substantial progress has been made in elucidating the molecular mechanisms underlying the formation and plasticity of GABAergic synapses. Evidence available ascribes a key role to the cytoplasmic protein gephyrin to form a postsynaptic scaffold anchoring GABA(A) receptors along with other transmembrane proteins and signaling molecules in the postsynaptic density. However, the mechanisms of gephyrin scaffolding remain elusive, notably because gephyrin can auto-aggregate spontaneously and lacks PDZ protein interaction domains found in a majority of scaffolding proteins. In addition, the structural diversity of GABA(A) receptors, which are pentameric channels encoded by a large family of subunits, has been largely overlooked in these studies. Finally, the role of the dystrophin-glycoprotein complex, present in a subset of GABAergic synapses in cortical structures, remains ill-defined. In this review, we discuss recent results derived mainly from the analysis of mutant mice lacking a specific GABA(A) receptor subtype or a core protein of the GABAergic postsynaptic density (neuroligin-2, collybistin), highlighting the molecular diversity of GABAergic synapses and its relevance for brain plasticity and function. In addition, we discuss the contribution of the dystrophin-glycoprotein complex to the molecular and functional heterogeneity of GABAergic synapses.  相似文献   

11.
Summary The specific benzodiazepine antagonist, Ro 15-1788, elicited withdrawal symptoms in squirrel monkeys, cats, rats and mice made tolerant and physically dependent by subchronic administration of high doses of diazepam, lorazepam or triazolam.  相似文献   

12.
Valid experimental models and behavioral tests are indispensable for the development of therapies for stroke. The translational failure with neuroprotective drugs has forced us to look for alternative approaches. Restorative therapies aiming to facilitate the recovery process by pharmacotherapy or cell-based therapy have emerged as promising options. Here we describe the most common stroke models used in cell-based therapy studies with particular emphasis on their inherent complications, which may affect behavioral outcome. Loss of body weight, stress, hyperthermia, immunodepression, and infections particularly after severe transient middle cerebral artery occlusion (filament model) are recognized as possible confounders to impair performance in certain behavioral tasks and bias the treatment effects. Inherent limitations of stroke models should be carefully considered when planning experiments to ensure translation of behavioral data to the clinic.  相似文献   

13.
Ethanol and opioid receptor signalling   总被引:1,自引:0,他引:1  
M E Charness 《Experientia》1989,45(5):418-428
Ethanol may modulate endogenous opioid systems by disrupting opioid receptor signalling. Low concentrations of ethanol slightly potentiate mu-opioid receptor binding by increasing receptor Bmax, and, in some cases, chronic ethanol exposure decreases the density or affinity of the mu-opioid receptors. By contrast, high concentrations of ethanol acutely decrease delta-opioid receptor binding by decreasing receptor affinity, whereas chronic exposure of animals and neuronal cell lines to lower concentrations of ethanol leads to possibly adaptive increases in the density or affinity of the delta-opioid receptors. In the neuronal cell line NG108-15, ethanol does not up-regulate the delta-opioid receptor by blocking receptor degradation or endocytosis, but protein synthesis is required for this response. Up-regulation of the delta-opioid receptor renders ethanol-treated NG108-15 cells 3.5-fold more sensitive to opioid inhibition of adenylyl cyclase. Long-term treatment with ethanol also increases maximal opioid inhibition in NG108-15 cells, possibly by decreasing levels of G alpha s and its mRNA. Ethanol differentially modulates signal transduction proteins in three additional neuronal cell lines, N18TG2, N4TG1, and N1E-115. Ethanol-treated N18TG2 cells show the least up-regulation of the delta-opioid receptor, little heterologous desensitization of adenylyl cyclase, and no changes in G alpha s or G alpha i. By contrast, ethanol-treated N1E-115 cells show the largest up-regulation of the delta-opioid receptor, the most heterologous desensitization of adenylyl cyclase, and concentration-dependent decreases in G alpha s and increases in G alpha i. Further analysis of these related neuronal cell lines may help to identify the molecular elements that endow some, but not all, neuronal cells with the capacity to adapt to ethanol.  相似文献   

14.
Cerivastatin: a cellular and molecular drug for the future?   总被引:7,自引:0,他引:7  
The 'statin story' began in 1987 when the first-generation, fungal HMG-CoA reductase inhibitor lovastatin received FDA approval in the USA. Ten years later, the sixth compound of this class came onto the world market - the fully synthetic statin cerivastatin. A number of clinical studies had confirmed its high pharmacological efficacy, its excellent pharmacokinetic properties with fast and nearly complete absorption after oral uptake, a linear kinetic over a broad concentration range, and its favorable safety profile. The greatest advantages, of cerivastatin, however, are its lipophilicity, its high bioavailability of about 60% after oral application and its potency at 100-fold lower doses compared to other lipophilic statins. Nevertheless, the most exciting findings are certainly its non-lipid-related, pleiotropic effects at the cellular and molecular level. Statin therapy was also found to reduce mortality in cases where cholesterol levels or atherosclerotic plaque formation remained unaltered. However, cerivastatin improves endothelial dysfunction, possesses anti-inflammatory, antioxidant, anticoagulant, antithrombotic, antiproliferative, plaque-stabilizing, immunmodulatory, and angiogenic effects, and may even prevent tumor growth, Alzheimer's disease, and osteoporosis. Most of these effects seem to be based on the inhibition of isoprenoid synthesis. Although cerivastatin is no longer on the market because of some problematic side effects, it could be one of the most potent cellular and molecular drugs for the future. Received 29 May 2002; received after revision 23 August 2002; accepted 26 August 2002 RID="*" ID="*"Corresponding author.  相似文献   

15.
Glycinergic neurotransmission has long been known for its role in spinal motor control. During the last two decades, additional functions have become increasingly recognized—among them is a critical contribution to spinal pain processing. Studies in rodent pain models provide proof-of-concept evidence that enhancing inhibitory glycinergic neurotransmission reduces chronic pain symptoms. Apparent strategies for pharmacological intervention include positive allosteric modulators of glycine receptors and modulators or inhibitors of the glial and neuronal glycine transporters GlyT1 and GlyT2. These prospects have led to drug discovery efforts in academia and in industry aiming at compounds that target glycinergic neurotransmission with high specificity. Available data show promising analgesic efficacy. Less is currently known about potential unwanted effects but the presence of glycinergic innervation in CNS areas outside the nociceptive system prompts for a careful evaluation not only of motor function, but also of potential respiratory impairment and addictive properties.  相似文献   

16.
The most studied pharmacological intervention in sickle cell anemia aiming at elevating HbF expression is the use of hydroxyurea. At the present time the experience has been that after 1 year of treatment with maximum tolerated doses (MTD) all patients showed increases of percent HbF, with a mean of 15% HbF, without apparent side effects besides the reversible ones observed during the process of attaining the MTD. The question of efficacy is presently being investigated by a multicenter placebo controlled double blind clinical trial that involves more than 20 sites. The goal of the study is to determine if hydroxyurea can decrease the incidence of painful crises by 50%. Results of this study are not expected before the end of 1993.  相似文献   

17.
Selected mouse lines, alcohol and behavior   总被引:3,自引:0,他引:3  
The technique of selective breeding has been employed to develop a number of mouse lines differing in genetic sensitivity to specific effects of ethanol. Genetic animal models for sensitivity to the hypnotic, thermoregulatory, excitatory, and dependence-producing effects of alcohol have been developed. These genetic animal models have been utilized in numerous studies to assess the bases for those genetic differences, and to determine the specific neurochemical and neurophysiological bases for ethanol's actions. Work with these lines has challenged some long-held beliefs about ethanol's mechanisms of action. For example, lines genetically sensitive to one effect of ethanol are not necessarily sensitive to others, which demonstrates that no single set of genes modulates all ethanol effects. LS mice, selected for sensitivity to ethanol anesthesia, are not similarly sensitive to all anesthetic drugs, which demonstrates that all such drugs cannot have a common mechanism of action. On the other hand, WSP mice, genetically susceptible to the development of severe ethanol withdrawal, show a similar predisposition to diazepam and phenobarbital withdrawal, which suggests that there may be a common set of genes underlying drug dependencies. Studies with these models have also revealed important new directions for future mechanism-oriented research. Several studies implicate brain gamma-aminobutyric acid and dopamine systems as potentially important mediators of susceptibility to alcohol intoxication. The stability of the genetic animal models across laboratories and generations will continue to increase their power as analytic tools.  相似文献   

18.
Summary The technique of selective breeding has been employed to develop a number of mouse lines differing in genetic sensitivity to specific effects of ethanol. Genetic animal models for sensitivity to the hypnotic, thermoregulatory, excitatory, and dependence-producing effects of alcohol have been developed. These genetic animal models have been utilized in numerous studies to assess the bases for those genetic differences, and to determine the specific neurochemical and neurophysiological bases for ethanol's actions. Work with these lines has challenged some long-held beliefs about ethanol's mechanisms of action. For example, lines genetically sensitive to one effect of ethanol are not necessarily sensitive to others, which demonstrates that no single set of genes modulates all ethanol effects. LS mice, selected for sensitivity to ethanol anesthesia, are not similarly sensitive to all anesthetic drugs, which demonstrates that all such drugs cannot have a common mechanism of action. On the other hand, WSP mice, genetically susceptible to the development of severe ethanol withdrawal, show a similar predisposition to diazepam and phenobarbital withdrawal, which suggests that there may be a common set of genes underlying drug dependentcies. Studies with these models have also revealed important new directions for future mechanism-oriented research. Several studies implicate brain gamma-aminobutyric acid and dopamine systems as potentially important mediators of susceptibility to alcohol intoxication. The stability of the genetic animal models across laboratories and generations will continue to increase their power as analytic tools.  相似文献   

19.
The intra-cardiac nervous system of the decapod heart is composed of large and small ganglionic cells (LGCs and SGCs) and axons of extrinsic cardio-acceleratory and-inhibitory neurons (CAs and CIs). Candidate neurotransmitters for the neurons have been determined by pharmacological, cytochemical and immunocytochemical tests. SGCs may be cholinergic, LGCs and CAs are probably dopaminergic, and CIs are GABAergic. Serotonin and octopamine were cardio-excitatory neuromodulators of the heart. Proctolin, crustacean cardio-active peptide (CCAP), red pigment concentrating hormone (RPCH), and FMRFamide also had modulatory actions on the heart. Proctolin was the most potent peptide, which acted primary on the cardiac ganglion. Insect adipokinetic hormones had little effect on the heart.  相似文献   

20.
G Lapointe  G Nosal 《Experientia》1979,35(2):205-207
The neurobehavioral evolution of the normally growing rat has been investigated by means of a series of reflex, motor and sensory tests from birth up to weaning. A sequential development of behavioral responses has been assessed over this 21-days period, and 2nd week following birth representing an important step in the neurobehavioral maturation of the rat. This rat model may be considered as an useful reference to evaluate changes that may be induced by pharmacological and toxicological agents in the developing exposed rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号