首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以水葫芦为原料,采用多聚磷酸活化法制备水葫芦活性炭.利用扫描电子显微镜(SEM)、比表面积测定仪(BET)和傅里叶红外光谱(FTIR)对活性炭进行表征,并将其用于吸附Pb(Ⅱ).结果表明:水葫芦活性炭其内部和表面存在着大量形态各异的孔隙,比表面积为1005.5m~2/g,平均直径为2.02nm;表面有羟基、磷酸基、羧基等基团,有利于对重金属离子的去除.水葫芦活性炭对Pb(Ⅱ)的吸附动力学和吸附等温线分别符合Elovich和Langmuir等温吸附方程,吸附过程属于单分子层吸附,饱和吸附量为133.33mg/g.  相似文献   

2.
以水葫芦活性炭为吸附剂吸附亚甲基蓝染料废水,探讨吸附剂投加量、振荡时间、pH值、温度及初始质量浓度对亚甲基蓝吸附的影响,考察水葫芦活性炭吸附亚甲基蓝的吸附等温线、动力学和热力学.结果表明,在水葫芦活性炭投加量为1 g·L-1、吸附时间为16 min、pH值为9、反应温度为30℃、亚甲基蓝初始质量浓度为160 mg·L-1的条件下,亚甲基蓝染料废水去除率最佳可达99. 7%;水葫芦活性炭对亚甲基蓝吸附符合Langmuir等温模型,且是自发的吸热过程,吸附过程与准二级动力学模型拟合较好.  相似文献   

3.
陈秀霞  陈曦  江东铭  黄勤  周君励 《海峡科学》2007,(6):130-130,165
LB—WHⅡ水葫芦提取液为水葫芦叶柄酸性提取液。用其浸泡实验室玻璃器皿可有效去除沾在壁上的无机污染物及油脂残迹。毒性试验结果显示.经LB—WHⅡ浸泡的玻璃器皿用水冲洗时产生的无色废液不会影响鱼类正常活动。Draize兔皮试验结果显示.该溶液不会引起皮肤出现红斑、肿胀等刺激性反应。与具腐蚀性的强酸、强碱洗液比较.LB—WHⅡ对玻璃器皿具有同等洁净效果.但不伤害皮肤、损坏衣物、污染环境。与皂类洗涤剂比较,LB—WHⅡ不会在物体表面形成沉淀。也不产生高泡、富磷、低透明度的生活污水.  相似文献   

4.
以水葫芦为原材料,柠檬酸改性制备生物炭对尼泊金乙酯(EP)的吸附。通过Box-Behnken Design实验,使用吸附剂添加量、pH值、EP初始浓度和反应时间这四个变量对尼泊金乙酯去除率的影响进行模拟优化。实验结果表明:水葫芦生物炭(WB)与柠檬酸改性水葫芦生物炭(CA-WB)在各单因素实验中对EP溶液去除影响的大小顺序为:吸附剂添加量>EP浓度>pH>反应时间。WB吸附EP的最佳反应条件为:pH为1.12、反应时间为3.28 h、EP初始浓度为18.4 g/L和WB添加量为3.86 g/L,此时WB对EP的去除率为81.04%,实际条件下验证EP去除率为85.12%,与预测值误差为4.79%;CA-WB吸附EP的最佳反应条件为:pH为2.8、反应时间为3.23 h、EP初始浓度为14.7 mg/L和CA-WB添加量为3.73 g/L,此时CA-WB对EP的去除率为96.00%,实际条件下验证EP去除率为93.24%,与预测值误差为2.96%。  相似文献   

5.
为研究生物炭对水体中Pb2+和 Cd2+的竞争吸附性能,本研究以水葫芦为原材料,制备得到水葫芦生物炭,对单一和二元体系中WHBC吸附Pb2+和Cd2+的吸附特性进行了研究,采用传统的Langmuir和Freundlich等温线模型对两个体系中的吸附结果进行了拟合.结果表明,前者对Pb2+和Cd2+的拟合都较好,WHBC...  相似文献   

6.
水葫芦茎处理含苯酚废水研究   总被引:1,自引:0,他引:1  
比较了干制和新鲜水葫芦茎处理含苯酚废水的能力,探讨了水葫芦茎的用量和重复回收利用对含苯酚废水的处理效果.结果显示:干制水葫芦茎处理苯酚的效果优于新鲜水葫芦茎;300mL含苯酚浓度为42.2mg/L的废水,0.5g干制水葫芦茎对其有最好的处理效果,去除率可达98.6%;已吸附苯酚的水葫芦茎经处理后可重复使用,但处理苯酚的效果逐渐减弱.  相似文献   

7.
以水葫芦幼苗为研究对象,设计了5个浓度梯度(0.5 mg/L、1.0 mg/L、2.0 mg/L、2.5mg/L和3.0mg/L),以水葫芦种子为研究对象,设计了5个浓度梯度(5μg/L、10μg/L、15μg/L、20μg/L和25μg/L),考察了不同浓度飞机草水提取物对幼苗生长以及种子发芽的影响.证实飞机草提取物对于水葫芦幼苗生长和种子发芽具有双重化感效应.在低浓度时观察到明显的生长刺激效应;在高浓度时观察到强的生长抑制效应.抑制效应开始于临界浓度,对于水葫芦幼苗和种子分别约为2.0 mg/L和15μg/L.  相似文献   

8.
以水芹菜、空心菜、水葫芦及香根草作为供试浮床植物,进行了景观再生水处理效果试验比较.结果表明:水芹菜、空心菜、水葫芦、香根草4种浮床植物在城市再生水条件下生长状态良好,相对生长速率(RGR)在0.2060.247/d之间变化,从高到低依次为:水葫芦>空心菜>香根草>水芹菜;4种植物浮床系统对再生水中的CODCr,TP,TN,NH3-N均有一定的去除效果.相对于南方地区,水葫芦长势一般,综合考虑空心菜、香根草、水芹菜比水葫芦更适合在苏北地区推广.  相似文献   

9.
为了解水葫芦(Eichhornia crassipes)在铜污染水体中生存的生理生态机制,设置不同浓度Cu2+(0(CK),0.5,1.0,1.5,2.0 mmol·L-1)对水葫芦进行模拟胁迫培养20 d,观测其叶片叶绿素荧光参数、叶绿素含量、叶氮含量及生物量分配的变化情况.结果显示:不同浓度Cu2+处理后,水葫芦叶片叶绿素荧光参数中叶片初始荧光(Fo)显著小于CK组(P0.05),光化学猝灭系数(qP)与光合电子传递量子效率(ΦPSⅡ)在0.5 mmol·L-1时均显著下降到最低值(P0.05).各个处理水葫芦的最大荧光(Fm)、最大光化学量子产量(Fv/Fm)及非光化学淬灭系数(NPQ值)均显著高于CK组(P0.05).叶片叶绿素含量随Cu2+浓度的增加呈先上升后下降的变化趋势,其中Cu2+浓度为1.0 mmol·L-1时叶绿素含量增加最大,增加比例为14.2%.叶氮含量随Cu2+浓度的增加先上升后下降,其中在Cu2+浓度为1.0 mmol·L-1时,叶氮含量最高,且与其他各处理组均有显著差异(P0.05).水葫芦光合器官生物量比随Cu2+增加呈先上升后下降趋势,而根生物量比却一直上升,导致根冠比持续上升.值得注意的是不同Cu2+处理下水葫芦花生物量比与对照相比均有不同程度的降低.上述研究结果表明水葫芦可能采取先利用再耐受这一机制以抗水体铜污染,同时水葫芦采用降低有性生殖策略响应水体铜污染环境.  相似文献   

10.
苦楝叶乙醇提取物对水葫芦叶片伤害的生理生化研究   总被引:1,自引:0,他引:1  
采用植物抗性生理的分析测定技术,研究了苦楝叶乙醇提取物对水葫芦叶组织细胞膜透性、丙二醛(MDA)含量及过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)和过氧化氢酶(CAT)活性的影响.结果表明,苦楝叶乙醇提取物使水葫芦叶组织细胞膜透性上升,膜脂过氧化加强,MDA含量上升,叶片的POD、APX和CAT的活性均较对照降低.说明水葫芦叶乙醇提取物具有防治空心莲子草的潜力.  相似文献   

11.
大肠杆菌JM109对废水中铀(Ⅵ)的吸附实验研究   总被引:1,自引:0,他引:1  
利用大肠杆菌JM109去除含铀废水,研究了在pH值、温度、吸附时间、铀离子的初始浓度、菌体浓度等,耐辐射奇球菌对铀的吸附效果.吸附试验结果表明耐辐射奇球菌有较高的吸附铀的能力,其中对低浓度的含铀废水处理潜力较大.当pH值为4.5时吸附效果最好,投加菌体浓度最佳为0.1 g/L,大约50 min左右达到吸附平衡,吸附量最高达到693.8 mg/g.吸附热力学研究其更符合Freundlich等温模型,吸附过程符合准二级动力学模型.  相似文献   

12.
赤泥吸附结晶紫的研究   总被引:1,自引:0,他引:1  
以山东赤泥为吸附材料,静态吸附法批量实验了温度、投加量、pH、接触时间、初始质量浓度(ρ0)等因素对含结晶紫废水的吸附效果.结果表明:在30℃,赤泥投加量为4g/L、pH为12、接触时间为2h的条件下,对含500mg/L的结晶紫染料溶液的去除率为95%,吸附量为119mg/g;赤泥吸附结晶紫热力学性质与Henry型吸附等温线吻合,热力学参数计算结果表明,吸附符合自发吸热过程;赤泥吸附结晶紫动力学过程符合一级动力学模型.  相似文献   

13.
利用廉价生物吸附剂去除污水中Pb2+和Zn2+的技术,研究了食用菌菌糠的吸附特性,调查污水pH、重金属初始浓度、吸附剂用量、吸附时间和温度对其吸附性能的影响.结果表明,在食用菌菌糠吸附剂用量分别为16g/L和12g/L,pH值分别为5和6,初始重金属质量浓度为20mg/L,吸附时间为3h,25℃条件下,达到了最大吸附量,对Pb2+和Zn2+的去除率分别达到92.79%和88.96%,处理后的Pb2+和Zn2+质量浓度分别为1.442mg/L和2.208mg/L,接近污水综合排放标准(GB8978—1996)中的排放质量浓度1mg/L和2mg/L.食用菌菌糠对Pb2+和Zn2+的吸附等温线符合Fleundlich模式.  相似文献   

14.
对改性花生壳处理含Cr6+废水进行研究,考察吸附时间、改性花生壳投加量、pH值、Cr6+溶液初始浓度对吸附效果的影响。实验结果表明,在吸附时间100min、改性花生壳投加量为5.0g/L、pH值2.0、Cr6+溶液初始浓度25mg/L、常温的优化实验条件下,硝酸改性花生壳比盐酸改性花生壳吸附效果好,硝酸改性花生壳吸附率达到87%,盐酸改性花生壳为71%。改性花生壳是一种较高效的重金属离子吸附剂。  相似文献   

15.
为提高天然膨润土的吸附性能,以十六烷基三甲基氯化铵(CTAC)为改性剂,制备有机阳离子改性膨润土,并通过吸附实验分析有机改性剂用量、吸附时间、改性膨润土投加量、废水pH及初始质量浓度对模拟染料废水脱色率的影响。结果表明:有机改性剂质量分数为20%,有机改性膨润土投加量为1.0 g/L,振荡时间为30 min,废水pH为6.0,初始质量浓度为40 mg/L时,有机改性膨润土对模拟染料废水的处理效果最佳,脱色率可达到95.66%。该研究为新型改性膨润土处理染料废水提供了技术参考。  相似文献   

16.
IntroductionChlorinated phenolic compounds,which aregenerated from a number of industrialmanufacturing processes,comprise the bulk of theenvironmental pollutants.Aqueous effluents fromindustrial operations such as polymeric resinproduction,oil refining,iron- steel,petroleum,pesticide,paint,solvent,pharmaceutics,woodpreserving chemicals,coke- oven,and paper andpulp industries contain chlorophenolic compounds.Their fate in the environment is of greatimportance as they are toxic,recalcitrant andb…  相似文献   

17.
重金属污水对生态环境和人类健康构成了严重威胁,其中含铜污水因污染严重、回收价值高而受到重视。以造纸白泥和粉煤灰为主要原料,经高温固相反应制备具有pH自调节能力的陶粒,将其作为吸附剂用于含铜污水的处理。采用静态吸附法及单因素变量法,分析原料配比、Cu~(2+)初始质量浓度、吸附时间、初始pH对吸附效果的影响;结合XRD、SEM及EDS探究陶粒的除铜机制。结果表明:陶粒的主要矿物相为钙长石、钙铝黄长石和硅灰石;在水溶液中部分矿物相发生非全等水解,从而自主释放OH~-形成碱性氛围;在污水除铜时,Cu~(2+)形成氢氧化物沉淀并被陶粒吸附。当初始Cu~(2+)溶液为20 mg/L、陶粒投加量为4 g/200 mL时,含铜污水经静态吸附10 h后,剩余Cu~(2+)质量浓度为0.36 mg/L,Cu~(2+)去除率达98.2%,吸附容量达0.998 6 mg/g。除铜后污水符合《污水综合排放标准》(GB 8978—1996)中的一级标准0.5 mg/L。  相似文献   

18.
采用一锅超声回流法制备一种新型的二氧化钛-氧化石墨烯(TiO2-GO)复合材料, 通过X射线衍射(XRD)、红外光谱(IR)和 Raman光谱对其结构进行表征, 并研究溶液的pH值、 吸附温度、 吸附时间、 溶液的初始质量浓度对该材料作为吸附剂对苯酚废水去除效果的影响. 实验结果表明: 400 mg/L的苯酚溶液, 室温下, pH=5时,该材料对苯酚的吸附量为80 mg/g;吸附过程符合Langmuir模型,动力学实验数据符合准二级动力学曲线; TiO2-GO可在30 min内有效净化苯酚废水,具有一定的应用前景.  相似文献   

19.
为了能以更有效更经济的方法去除废水中的Ni(Ⅱ),选用成本低廉的大豆秸秆制备生物炭作为吸附剂,研究了炭化温度、溶液pH、吸附剂投加量、溶液温度、Cd(Ⅱ)质量浓度对吸附效果的影响,得到了最佳的吸附条件,开拓了去除重金属镍的新方法,同时研究了生物炭对Ni(Ⅱ)的吸附动力学和吸附等温线。实验表明,大豆秸秆生物炭对Ni(Ⅱ)有较好的吸附性能,Ni(Ⅱ)质量浓度为20mg/L,炭化温度为500℃,pH为7,投加量为0.2g,室温为25℃,Cd(Ⅱ)质量浓度为0为最佳吸附条件。吸附反应符合准二级动力学方程。吸附等温线符合Langmuir模型,25℃时饱和吸附量为14.38mg/L。扫描电镜分析显示,炭化使得秸秆孔道结构增多,表面粗糙程度加剧,比表面积增大,从而提高了吸附性能。  相似文献   

20.
为探究U(VI)溶液初始浓度、溶液pH、活性炭投加量、吸附时间对U(VI)去除效果的影响,以农业废弃物柚子皮为原料、氯化锌为活化剂、微波为热源,制备了柚皮基活性炭,将制得的最优活性炭进行U(VI)吸附实验,并分析了其吸附动力学方程,探讨了其吸附U(VI)的机理。实验结果表明:在活化浓度为30%、活化剂浸渍时间为24 h、微波功率为700 W、辐照时间为90 s的条件下,柚皮基活性炭对碘的吸附值最高,达到769.9 mg/g;在U(VI)溶液初始质量浓度为5 mg/L、溶液pH为7、活性炭投加量为0.6 g/L、吸附时间为24 h时可以达到吸附平衡,U(VI)的饱和吸附容量为8.25 mg/g,吸附率为99.01%;其吸附U(VI)的行为符合准二级动力学模型,吸附U(VI)前后自身结构发生较大变化,柚皮基活性炭对U(VI)的吸附是一种以化学吸附为主、活性炭表面的羰基、CC、羟基和羧酸等官能团与U(VI)水解后的离子作用并存的吸附方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号