共查询到20条相似文献,搜索用时 78 毫秒
1.
基于径向基函数网络的混沌时间序列分析 总被引:9,自引:0,他引:9
给出了基于径向基函数网络的混沌时间序列预测的方法。利用非线性自回归移动平均(NARMAX)模型对非线性时间序列进行辨识并给出基于动态径向基函数(RBF)网络的辨识算法。将这一方法应用到Henon映射的混沌时间序列的嵌入维估计及我国股票市场的混沌现象的实证研究,得到理想的结果。文章最后指出了进一步的研究方向。 相似文献
2.
提出一种海杂波背景下雷达回波数据处理的设计方案:即不改变原始数据动态特性基础上对其进行预处理,再检验数据的混沌性,最后利用径向基函数(RBF)神经网络作为预测器,对目标有无进行判断。实验结果表明,该方案可以有效提高海杂波背景下雷达的探测能力。 相似文献
3.
4.
5.
混沌时间序列局域线性预测方-法 总被引:12,自引:0,他引:12
在许多场合下,时间序列中的明显随机性可能是由于非线性确定性系统中混沌行为的缘故.混沌系统对初值的极端敏感性使之不可能对其时间序列进行长期预测,然而,利用混沌的确定性可以进行短期预期.混沌时间序列预测首先要重构相空间,接着再利用非线性函数逼近方法构造一个动力学系统模型.探讨了预测模型问题,并用数值分析的方法对Farmer&Sidorowich,Linsay和Navone&Ceccato提出的三种典型混沌时间序列局域线性预测方法进行了研究.实验结果表明,这三种方法的性能是相同的.本文的结果将平息人们对这三种方法优劣的争论,有利于在实际中选择合适的预测模型. 相似文献
6.
利用相空间重构技术,并借助C-C方法和小数据量法从一维瓦斯涌出量时间序列中提取最大Lyapunov指数。结果表明:最大Lyapunov为0.28126的瓦斯浓度时间序列具有混沌特性,且在短期内,预测结果与实际情况符合较好。 相似文献
7.
针对高海情时海杂波有较长拖尾的问题,提出一种基于人工蜂群技术的海杂波参数优化方法。在雷达目标的环境模拟中,海杂波的建模与仿真是重要的组成部分,对于对数正态分布的海杂波,根据零记忆非线性变换法的原理,结合人工蜂群算法对海杂波的产生过程进行参数优化,讨论具体的实现过程,并找出合适的滤波器系数,得出理想的杂波谱。仿真结果表明:该方法的性能要优于以往的基于粒子群优化技术以及遗传算法的参数优化方法。 相似文献
8.
基于混沌理论与径向基函数神经网络的混沌时间序列预测 总被引:2,自引:0,他引:2
向小东 《福州大学学报(自然科学版)》2003,31(4):401-403
根据混沌时间序列的特性 ,给出了将混沌理论与径向基函数神经网络相结合对其预测的方法 .首先在虚假邻域概念基础上 ,提出了可同时确定合适的嵌入维数与时间延迟的方法 ,从而可据此确定径向基函数神经网络的输入 ;然后 ,用径向基函数神经网络进行学习及预测 .最后 ,给出一个实例 . 相似文献
9.
混沌时间序列的局域线性回归预测方法 总被引:6,自引:0,他引:6
混沌时间序列预测是80年代末发展起来的一种非线性预测新方法.它已在天气预报、经济预测、电力负荷预测、股市预测等方面得到成功应用.混沌运动是确定系统具有内在随机性的一种运动,它的行为极其敏感地依赖于初始条件.混沌系统从两个极其邻近的初始点出发的两条轨道... 相似文献
10.
本文对香港恒生指数期货(HSI)的时间序列进行了分析和预测。我们发现该时间序列具有分数组和正的Lyapunov指数,这表明该序列是由内在的混沌确定力产生的。在对该序列进行动力学重构和可测性分析的基础上,我们用混沌算法的前馈神经网络对它进行了在线预测。计算机模拟表明混沌算法神经网络的预测噗蒿于背传算法神经网络的预测精度。 相似文献
11.
ZHAO DongHua RUAN Jiong CAI ZhiJie 《科学通报(英文版)》2007,52(4):570-573
In the present paper, we propose an approach of combination prediction of chaotic time series. The method is based on the adding-weight one-rank local-region method of chaotic time series. The method allows us to define an interval containing a future value with a given probability, which is obtained by studying the prediction error distribution. Its effectiveness is shown with data generated by Logistic map. 相似文献
12.
为提高加权一阶局域模型的预测精度,提出一种改进型混沌时间序列预测方法.该方法用衰减系数和时间延迟修正向量距离公式,调节邻近点与中心点的相关性,同时,只用邻近点中与预测值相关性最大的分量进行线性拟合.利用该方法对Henon混沌时间序列进行预测的结果表明,衰减系数取最佳值时,相对于现有算法,该方法可以更精确地预测混沌时间序... 相似文献
13.
提出了一种基于多变量相重构的混沌时间序列预测方法.该预测方法从非线性动力学系统中获取与待预测时间序列相关的信息组成多变量时间序列,首先进行多变量相空间重构,然后利用局域多元线性回归模型在相空间中进行预测,最后从预测出的高维相点中分离出时间序列的预测值.由于考虑了动力学系统中多个变量之间相互耦合的关系,从而增加了重构相空间的系统信息量,使得相空间的相点轨迹更加逼近原系统的动力学行为.与采用单变量进行预测的方法相比,基于多变量相重构的预测方法无论是单步预测还是多步预测,都能有效地提高预测精度,且具有嵌入维数的选择对预测精度影响较小的优点.通过对Lorenz混沌信号进行预测,实验结果验证了方法的有效性. 相似文献
14.
电力系统短期负荷预测在电力系统的调度和管理中起着重要的作用,已有研究证明了电力短期负荷是一非线性动力系统,负荷时间序列是混沌时间序列.文章讨论混沌时间序列的相空间重构技术,并以实际电网为例重构了该电力系统的相空间,最后采用Elman递归神经网络对负荷时间序列进行仿真预测,预测结果表明采用该方法能取得较好的预测效果. 相似文献
15.
提出了一种改进的支持向量机(SVM)混沌时间序列预测精度的方法。对于模型参数估计,引入混沌粒子群优化算法(CPSO)实现全局寻优,利用支持向量回归实现非线性系统的建模和预测。对Mackey-Glass混沌时间序列进行了预测实验的结果表明,本文方法能对Mackey-Glass混沌时间序列进行准确预测。 相似文献
16.
提出了一种新的混沌时间序列预测方法——多维泰勒网方法.该方法不以相空间重构方法中嵌入维数和时间延迟这两个关键参数的选取为前提,无需系统的先验知识和机理,仅根据已知的时间序列样本,通过多维泰勒网模型获得n元一阶多项式差分方程组,进而得到能反映非线性系统动力学特性的多维泰勒网动态模型.在此基础上提出了基于多维泰勒网的自适应多步预测方法,通过数据窗口的滑动自适应建模,实现对混沌时间序列的多步预测.将该方法应用于Lorenz混沌时间序列的一步和多步预测,均方误差分别达到2.56×10-5和2.76×10-3.仿真结果表明,该方法可以对混沌时间进行有效预测,且具有较高的预测精度. 相似文献
17.
18.
JIANGWei-jin XUYu-sheng 《武汉大学学报:自然科学英文版》2004,9(5):735-739
We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system. and estimated the parameter of the model by using the best update option. In the end. we forecast the intending series value in its mutua[[y space. The examp[e shows that it can increase the precision in the estimated process by selecting the best mode[ steps. It not only conquer the abuse of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly, and the result of it is better than the method of statistics and other series means, 相似文献
19.
针对混沌时间序列难以预测和控制问题,提出了基于趋势的混沌预测模型,利用混沌系统的初值、参数敏感性来微调和控制系统扰动,并用改进的最优化方法估计模型的参数,在其相空间中对时序未来值进行预测.算例表明,选取最佳的模型阶数能增加预测的准确程度,它不仅克服了仅用延迟嵌入技术的弊端,也降低了直接使用预测误差决定输入模式的盲目性.预测效果比其他时序方法要好. 相似文献
20.
为了提高风速序列预测的可靠性,针对具有混沌特性的风速序列,构造了一种用于风速序列预测的联想网络。以风速序列的波动性作为相似性测度准则,构造联想网络的存储样本模式,根据存储模式中蕴含的关联信息完成网络的无监督学习,从而完成具有自相似性的风速序列的一步或多步预测分析。与传统前向型神经网络相比,该网络预测机理明确,预测结果唯一,且可一次给出多步预测结果。仿真实验结果表明,该网络的具有良好预测性能,适用于风速序列的动态预测。 相似文献