首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
以精选的磁铁矿粉末为原料,制备磁铁矿块状多孔电极用于电解制备高铁酸盐.所用磁铁矿多孔电极在经过阴极极化等一系列预处理过程,在16 mol·L-1 NaOH溶液中表现出了很高的电流效率.在这一电解液中,通过对阳极电流密度、高铁酸盐的生成速率、电流效率、槽内电解温度等影响因素的研究,找到了较为适宜的电解条件:J=3.3 mA·cm-2,30 ℃, 16 mol·L-1 NaOH溶液.  相似文献   

2.
采用双阴极室隔膜电解槽,以多孔圆筒铸铁为阳极电解法制备水处理剂高铁酸盐.实验表明,在14 mol/L的NaOH溶液中,30℃下以30 mA/cm2的电流密度电解5.5 h可以获得36.8%的电流效率,高铁浓度可达到0.07 mol/L.用电解新制的高铁酸盐降解联苯胺模拟废水的结果表明,CODCr的去除率达85%,联苯胺最终被矿化成小分子无机物.  相似文献   

3.
新型电极材料高铁酸盐的合成研究   总被引:4,自引:0,他引:4  
高铁酸盐是新型的电极活性材料,以其作正极的高铁电池是一种可望替代锌锰电池的绿色电池。论述了电极材料高铁酸盐(高铁酸钾及高铁酸钡)的合成方法和工艺,确定了最佳的合成工艺参数如氧化剂,温度,脱碱剂等。使用XRD表征了高铁酸钾和高铁酸钡的结构,使用邻二氮菲分光光度法测定其纯度。实验结果表明改进的方法具有工艺简单,产品稳定性好等优点。  相似文献   

4.
快速电合成法制备多功能复合高铁(铝)酸盐水处理剂   总被引:2,自引:0,他引:2  
采用两阴极夹-阳极且阳极室较窄的电解池,以铁丝网为阳极、浓氢氧化钠(或含铝)溶液为阳极液、全氟离子膜为隔膜,可快速电合成高浓度的高铁酸钠(0.30—0.48mol/L)复合水处理剂溶液,该溶液也可用于制备高铁酸钾。最佳条件:温度308K,氢氯化钠浓度16mol/L,表观电流密度300A/m^2,阳极室厚度20mm,时间4-6h。实验表明:铝酸盐的存在对高铁酸盐的电合成有较大的抑制作用;由碘化钾、硅酸钠和氯化铜组成的复合添加剂对高铁酸盐的稳定效果明显好于其它几种稳定剂。  相似文献   

5.
采用双阴极室隔膜电解槽电解制备高铁酸钾,以铁丝网作为阳极材料,石墨碳棒作为阴极材料,两极室用Nafion117阳离子交换膜隔开.探索不同NaOH浓度、电解液成分、电流密度以及助剂对高铁酸盐产率的影响.并用制得的高铁酸盐降解苯胺,考察了pH值、反应时间、苯胺初始浓度以及高铁酸盐投加量对苯胺去除率的影响.助剂KIO 4、石墨和ZnCl 2的添加无法提高高铁酸盐的生成.在pH=10、n(苯胺)∶n(Fe)=1∶10、处理时间30 min的条件下,苯胺的去除率可达80.60%.  相似文献   

6.
高铁酸盐的化学合成及高铁电极的电化学性质研究   总被引:1,自引:0,他引:1  
通过NaClO化学氧化Fe(OH)3来制备高纯度的K2FeO4和BaFeO4,并在此基础上研究了BaFeO4和K2FeO4电极的恒流放电性能以及用BaFeO4和K2FeO4制成的锌铁碱性电池的重负荷放电性能。结果表明,BaFeO4和K2FeO4电极在轻、中、重负荷放电下,其放电容量比电解MnO2 的电极提高了56%~116%。AA型锌铁碱性电池的重负荷放电时间比标准碱锰电池提高了95%以上。  相似文献   

7.
用浓碱水溶液中次卤酸盐氧化法制备出黏糊状的高铁酸盐,加入粘土、无水硫酸钠与高铁酸盐制成不同比例的复合高铁酸盐,并对其溶出的高铁酸根浓度进行测定.探讨了黏土、无水硫酸钠的加入量及加入顺序对复合高铁酸盐稳定性的影响,找到了制备复合高铁酸盐片剂的最佳条件,在此条件下制备的复合高铁酸盐片剂具有较高的稳定性,研究结果极具工业应用...  相似文献   

8.
激光辅助次氯酸钠氧化法制备高铁酸盐   总被引:1,自引:1,他引:1  
在次氯酸钠氧化法制备高铁酸盐的基础上,用二氧化碳激光器发出的10.6 μm、10 W红外激光照射反应体系,同无光照相比,反应速率明显加快,产物产率平均提高20%~30%,最高浓度可达0.22 mol/L.并对激光光照下,反应体系化学反应的基本原理进行了初步分析,给出了与实验结果相符合的理论解释.  相似文献   

9.
硅铁阳极溶出非隔膜电解制备高铁酸钠   总被引:2,自引:0,他引:2  
作者报道了用硅铁作为阳极,在非隔膜电解槽中电解制备了新型高效水处理剂高铁酸钠,并探索了最佳反应条件.当槽电压为3~7V,电流密度为40mA·cm-2,用含1%硅酸钠的40%的氢氧化钠为电解液,反应体系温度控制在35~40℃,电解180min,电流效率可达43.0%,可得到浓度为0.078mol·L-1的高铁酸钠.实验表明,用硅铁作阳极材料,比碳钢、镀锌铁皮、铸铁等阳极材料的电流效率以及电解产率都高得多.  相似文献   

10.
制备了熔盐电解TiO2制备海绵钛过程中所需的TiO2电极,实验结果表明:在电极制备过程中,各组分质量比量分别为TiO2(锐钛型):聚乙烯醇:H2O=100:5~8:8~10,成型过程中压力控制范围为10~15MPa,烧结温度在900~1300℃之间,烧结时间为4~16h。对TiO2电极质量测试结果表明,按上述工艺制备的电极完全能够满足电解过程的需要。  相似文献   

11.
高铁酸钾的电化学合成研究   总被引:4,自引:0,他引:4  
以金属铁为正极、以铂为负极材料,13 5mol·dm-3氢氧化钾溶液为电解液在隔膜电解池中电化学合成高铁酸钾。理想合成温度为30℃,电流密度约为0 5mA cm2,在饱和氢氧化钾溶液中合成电流效率为58 7%。充电电压为1 92~1 83V。电化学合成时间为2~3h。  相似文献   

12.
高铁酸钠的电化学合成研究   总被引:3,自引:2,他引:3  
以金属铁为正极材料、铂为负极,18mol/L NaOH氢氧化钠溶液为电解液在隔膜电解池中电化学合成高铁酸钠。理想合成温度约20℃,电流密度约O.5mA/cm^2,在饱和氢氧化钠溶液中合成电流效率为71.4%。充电电压为1.92—1.83V;电化学合成时间为2-3h。  相似文献   

13.
高铁酸钾溶液热稳定性研究   总被引:3,自引:0,他引:3  
电化学合成的高铁酸钾溶液有较高的活性。其分解过程为一级反应,反应活化能为12.7kJ/mol。硅酸钠对增加其稳定性有较大的帮助。固体高铁酸钡中加入微量该物质,其稳定性得到较大改善。  相似文献   

14.
研究了有膜法电化学合成丁二酸的电解过程,探讨了硫酸浓度、电流密度、初始马来酸浓度、温度对转化率、电流效率、电能的影响,获得适宜的阴极电解条件为硫酸浓度0.6—0.9kmol/m^3,电流密度0.15A/cm^2,马来酸浓度1.0-1.5kmol/m^3,温度50-55℃。  相似文献   

15.
高铁酸盐制备及氧化降解硝基苯水溶液的研究   总被引:1,自引:0,他引:1  
利用化学法制备高铁酸钾,研究了其对硝基苯废水的处理效果.实验表明,当温度为30℃、反应时间为1.5 h、铁盐的质量分数为30%左右时,高铁酸钾的产率最高,达到了50%~60%.用制备的高铁酸钾降解氧化硝基苯废水,结果表明,在pH约为7,高铁酸钾与硝基苯的质量比约为25∶1,反应时间20 min,CODcr的去除率可达到近88%.  相似文献   

16.
文章比较了高铁酸钾、次氯酸钠、高铁酸钾与次氯酸钠联用对PVA的降解效果,考察了高铁酸钾和次氯酸钠的投加量、氧化时间、PVA溶液的pH值和初始质量浓度对PVA去除率的影响。通过红外光谱及黏度测定,对降解产物及其分子量变化进行了分析。结果表明,用高铁酸钾与次氯酸钠联合氧化PVA时,降解效果最佳;在3.0 g/L,pH值为7.2的PVA溶液中,当高铁酸钾与次氯酸钠的投加量分别为0.32 g/L、3.92 g/L,反应时间为50 min时,PVA的去除率大于98%,COD去除率大于40%;在联合氧化降解过程中,PVA断链成小分子物质,最终降解产物主要为羧基化合物。  相似文献   

17.
固体高铁酸钡的稳定性研究   总被引:2,自引:0,他引:2  
经过对固体高铁酸钡在不同温度下的稳定性研究,发现热分解是导致高铁酸钡稳定性较差的重要因素。对该物质进行表面处理和加入微量的添加剂可以明显改善其稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号