首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
采用间歇鼓泡碳化法,在反应温度为35℃、灰乳密度为1.05(d)、CO2浓度为30%(V%)和柠檬酸浓度为10%(ω%)的条件下制得了粒度为1.0~3.5μm、分散性好的花生壳状碳酸钙粉体.用扫描电子显微镜(SEM)、原子力扫描探针显微镜(ASPM)、X射线衍射仪(XRD)、红外光谱仪(IR)、热重分析(TG)、粒度分析仪等对样品进行了表征,并对碳化过程的压力、粘度随时间的变化规律进行了分析.结果表明,柠檬酸对碳酸钙的形貌具有重要调控作用,花生壳状碳酸钙是由大量粒度为10~50 nm的纳米粒子组装而成.  相似文献   

2.
本文聚焦大理石加工行业废浆的资源化利用问题,以湿法冶金萃取工艺纯化得到的氯化钙溶液为主要原料,重点探索利用电化学原位碳化的方法从氯化钙制备纳米碳酸钙,实现从固废转变成高端钙基材料的目标。研究采用电化学法+原位碳化反应的制备方法,创造适合环境,使得氯化钙与二氧化碳直接发生碳化反应。通过调控直流电压、反应温度、反应时间、晶型控制剂添加量(柠檬酸)和CO2通气速率等影响因素,研究其对生成碳酸钙形貌和粒径的影响。采用X衍射光谱(XRD)、场发射扫描电镜(FESEM)、透射电镜(TEM)分别对碳酸钙形貌、粒径及比表面积进行表征。实验结果表明,电化学原位碳化反应的较佳工艺条件为直流电压12V、反应温度20℃、反应时间3h、柠檬酸添加量5mmol/L、CO2通气速率30mL/min。该条件下可得到链状纳米碳酸钙,直径30nm,长径比(L/D)约8。利用电化学法原位碳化氯化钙可制备获得链状纳米碳酸钙,不需要外加碱,其碳化过程可表述为电化学复分解反应。  相似文献   

3.
纳米碳酸钙材料的工业合成与应用   总被引:3,自引:0,他引:3  
该文对目前工业上生产纳米碳酸钙的方法作了较为详细的综述。对一步碳化法、两步碳化法、多段喷雾碳化法、旋转填充床碳化反应器碳化技术制备链形、纺锤形、球形、立方形等不同形状的纳米碳酸钙材料的方法进行了比较和总结。  相似文献   

4.
基于化工生产中大量副产氯化钙,以氯化钙、氨水和二氧化碳为原料,在添加剂条件下对制备纳米碳酸钙进行了研究。实验研究了添加剂种类和用量、反应温度和二氧化碳流量等工艺条件对产物粒径的影响,采用XRD和TEM对产物进行了分析。实验结果表明:在添加剂条件下,以氯化钙、氨水和二氧化碳为原料可以制备纳米碳酸钙,反应条件温和能耗低;实验条件下制备的产物为方解石型近球状纳米碳酸钙。  相似文献   

5.
纳米流体强化CO2鼓泡吸收实验   总被引:2,自引:0,他引:2  
利用两步法制备了多种乙醇基质纳米流体,建立了一套纳米流体强化气体吸收实验装置,分别测试了CO2在体积分数为0.01%-0.10%的Al2O3-C2H50H、MgO-C2H50H、SiO2-C2H5OH、TiO2(5nm).C2H50H、TiO2(25nm).C2H50H、Ti02(60nm)-C2H50H纳米流体中的吸收浓度曲线,得到了纳米流体的体积分数、纳米粒子的种类和粒径等因素对C02吸收过程的影响.实验结果表明,纳米流体的吸收强化效果随着纳米粒子体积分数的增加而增加,并且随着纳米流体中纳米粒子粒径的增加而减少.此外,还对纳米流体强化CO2吸收过程的机理进行了分析.  相似文献   

6.
电石渣制备纳米晶碳酸钙的液相法工艺研究   总被引:4,自引:0,他引:4  
文章研究了以氯化铵为提取液,利用液相法从电石渣中提取钙的工艺条件,并利用提取的钙与碳酸铵反应,成功制备出了纳米碳酸钙;从降低生产成本与提高产品质量出发,设计了一个二级循环浸取工艺,从而成功实现了氯化铵在整个制备过程中的循环利用,并达到环保的目的;该工艺中钙的提取率可达91.43%,产品碳酸钙的纯度与白度分别为99.93%与98,符合国家标准;X射线粉末衍射(XRD)结果表明,产物为纯净的方解石型碳酸钙;透射电子显微镜(TEM)显示产物的粒径为30 nm左右。  相似文献   

7.
循环法制备高纯碳酸钙工艺研究   总被引:1,自引:0,他引:1  
目的制备电子陶瓷工业用高纯碳酸钙。方法以工业碳酸钙为原料,采用改进的氢氧化物沉淀法,经过煅烧、浸出、沉淀、碳化等步骤制备高纯碳酸钙,并用原子吸收分光光度法和电位滴定法对杂质进行了分析,用粒度分析仪对产品粒度分布进行了测定。结果得到一条循环法生产高纯碳酸钙的优化工艺路线,该工艺过程如下:原料经煅烧后与氯化铵反应,加入沉淀剂过滤,除去杂质;将前工序煅烧时产生的CO2气体通入过滤后的滤液中,进行碳化反应;生成物经过滤干燥后即得到高纯碳酸钙;滤液循环使用。结论浸出温度,浸出时间,pH,pH调节试剂,碳化温度,洗涤水温等对产品均有影响。  相似文献   

8.
碳酸钙是化学实验室常见的一种无机试剂,也是一种常见的无机盐化工产品。近年来对于纳米碳酸钙的制备及应用已被越来越多的学者关注。本文主要就纳米碳酸钙的制备及用途作了简介。  相似文献   

9.
鼓泡法测量有机薄膜力学性能   总被引:1,自引:0,他引:1  
为了检验鼓泡法测试薄膜力学性能的可靠性,用鼓泡法试验研究了一种有机薄膜的弹性模量、弹性极限,及其在低碳钢基体上粘结的界面结合能.结果表明,该膜力学性能的测试结果与鼓泡法试样尺寸无明显关系,且与单向拉伸和拉脱实验结果基本相符.鼓泡实验测得该膜的二维弹性模量Y为(2.5±0.3)GPa,弹性极限σ e 为(14.0±1.5)MPa,界面结合能G为(13.9±2.2)N/m.  相似文献   

10.
正交实验钢渣碳化工艺条件   总被引:8,自引:0,他引:8  
为提高钢渣碳化率及碳化后抗压强度,正交试验研究钢渣碳化工艺条件,并用X射线衍射分析(XRD)、扫描电子显微镜(SEM) 测定分析相组成及晶体形貌.结果表明:各工艺条件因素对钢渣碳化的影响程度依次为:钢渣粒度>CO2气体压力>成型压力>碳化时间.实验得出最佳工艺条件为钢渣粒度<0.9mm,成型压力=100kN,CO2气体压力=1.5MPa,碳化时间=3h.  相似文献   

11.
利用电石渣制备球形碳酸钙的研究   总被引:2,自引:0,他引:2  
为有效利用电石制乙炔的副产物电石渣资源,以电石渣为原料用化学沉淀法合成了球形碳酸钙,并利用X射线衍射、扫描电镜等手段研究了溶液的pH值、电石渣的预处理方式、碳化反应温度、Ca2 浓度、CO2流量等对球形碳酸钙合成的影响.结果表明:电石渣可直接与氯化铵反应,当pH>7时,合成的球形碳酸钙的纯度(质量分数)大于97%,白度大于98;合成球形碳酸钙的最佳碳化反应温度为10℃左右,碳化反应温度是影响球形碳酸钙形成的主要因素;在一定的范围内,随着CO2浓度的提高,球形碳酸钙的分散性变好,粒度变小;当反应溶液中Ca2 的浓度适当时(如0.08 mol/L),球形碳酸钙粒径较均匀,分散性好;利用电石渣可以制备出高质量的球形碳酸钙.  相似文献   

12.
文石晶须的碳酸化合成工艺研究   总被引:9,自引:0,他引:9  
利用在加有MgCl2 的石灰乳悬浊液中进行碳酸化的方法,合成了文石CaCO3 晶须,晶须直径在1 ~2 μm ,长径比在10 ~40 之间.详细研究了MgCl2 的浓度、悬浊液初始pH 值、反应温度及搅拌速度等工艺条件对沉淀CaCO3 晶型的影响,并初步探讨了CaO 的活性对文石晶须形态习性的影响.利用X 衍射分析手段对沉淀CaCO3 晶型进行了定量测定.实验表明:在悬浊液初始pH 值为9 左右,反应温度为60 ℃以上及搅拌速度为240 r/min 的条件下,可制备出均一的文石CaCO3 晶须  相似文献   

13.
利用电石渣制备纳米碳酸钙的研究   总被引:10,自引:0,他引:10  
以电石渣为原料 ,制备纳米碳酸钙 .研究制备过程中原料浓度、气体浓度、气体流速、反应温度、搅拌速度、添加剂用量等对产品粒径及晶型的影响 .采用 TEM、XRD等手段对颗粒形态与结构进行表征 ,纳米碳酸钙平均颗粒粒径约 5 0 nm,晶粒平均尺寸约 30 nm,为方解石型 .  相似文献   

14.
碳酸钙超细粒子的制备   总被引:1,自引:0,他引:1  
本文用不同的方法合成了由微米级到纳米级粒径不等的方解石型和文石型碳酸钙超细粒子,并对其各种的物理性质和结构进行了测定和表征。结果表明:随着粒径的减少,方解石微晶的完整性逐渐趋于破坏,结晶程度逐渐降低,而文石的软团聚性却逐渐趋于增强;并且粒径越小,碳酸钙超细粒子分解温度越低,活性越强。另外,本文还对方解石型和文石型碳酸钙超细粒子的形成机理和粒径控制进行了探讨,着重研究了温度、干燥方法和搅拌速率对超细粒子粒径的影响。并从结晶热力学的角度,分析了通常情况下制备文石型碳酸钙超细粒子的可行性。  相似文献   

15.
介绍了纳米碳酸钙的制备原理和方法.探讨了在超声波存在条件下,初始碳化温度、Ca(OH)2乳液浓度、CO2流量对合成反应过程的影响.研究结果表明,超声波具有强化纳米碳酸钙合成反应过程的作用,能够改善反应体系的传质、传热效果,大大提高溶液中钙离子的过饱和度,诱导碳酸钙迅速均匀成核;在超声波的作用下,碳化过程的最高初始温度可以提高5℃,从而能够缩短合成反应时间,提高合成效率.在试验研究的基础上,利用自制的超声合成反应器,在最佳工艺条件下,稳定地制备出了20~30 nm的纳米碳酸钙粉体;实现了利用超声波进一步细化、均匀化合成纳米碳酸钙产品的目的,使制备的纳米碳酸钙产品的质量更加优化.  相似文献   

16.
利用同心环波纹碟片式超重力旋转床制备粒径范围在20~30 nm的纳米碳酸钙样品,并对影响其生成的因素进行了研究.实验结果表明:纳米碳酸钙的粒径随转速、气流量、气相中CO2的含量、晶形控制剂用量的增加而减小,在Ca(OH)2浓度较低的条件下,粒径随Ca(OH)2浓度的增加而减小;反应时间随转速、气流量、CO2含量的增加而减小,随晶形控制剂用量的增加而增加;在旋转床转速约为1 100 r/min、CO2含量约为40%(体积分数)、晶型控制剂用量为Ca(OH)2质量的0.5%时,产品的粒径较小,反应的时间较短,是反应的最佳操作点.  相似文献   

17.
张爱华 《科学技术与工程》2013,13(10):2880-2883
采用氯化铵对电石渣进行除杂、碳化制备了纳米碳酸钙。优化实验结果表明:干燥温度105℃、pH=8、反应时间1h、氯化铵溶液浓度8%、氯化铵过量程度30%的条件下电石渣收率达92%以上。XRD分析表明产品为方解石,平均晶粒尺寸为38 nm,SEM表明平均颗粒径为80 nm。  相似文献   

18.
通过将CaCl2水溶液与混有结晶控制剂H2SO4的NH4HCO3水溶液进行撞击反应,制得了疏松均匀的多孔性球形超细碳酸钙粉体.在撞击反应体系中CaCl2浓度为1 mol/L,NH4HCO3浓度为2 mol/L,H2SO4浓度为0.4 mmol/L.扫描电镜(SEM)分析结果表明,制得的碳酸钙为内部结构疏松的球形颗粒.对多孔性球形碳酸钙的生成机理进行探讨的结果表明,在碳酸钙制备过程中,采用撞击反应以减少反应物接触时间、反应过程中CO2逸出形成爆破力以及适当浓度的结晶控制剂硫酸,对制得的碳酸钙颗粒形貌有着至关重要的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号