首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Galanin has diverse physiological functions, including nociception, arousal/sleep regulation, cognition, and many aspects of neuroendocrine activities that are associated with feeding, energy metabolism, thermoregulation, osmotic and water balance, and reproduction. This review will provide a brief overview of galanin actions in some major neuroendocrine processes. Most of the recent data are about the role of galanin in the central regulation of food intake and energy metabolism, and to some extent, in the regulation of reproduction. It seems that galanin plays a modulatory rather than regulatory role in the central and peripheral branches of the neuroendocrine systems. In the hypothalamus, it functions as a neurotransmitter/neuromodulator. In the pituitary and the peripheral endocrine glands, it acts via its receptors (GALRs) in a paracrine/autocrine fashion. The development of new, selective and potent antagonists of GALRs should keep advancing our knowledge not only in the physiology but also the pathophysiology of galanin as well.  相似文献   

2.
Galanin – 25 years with a multitalented neuropeptide   总被引:2,自引:0,他引:2  
Galanin (GAL) and GAL receptors (GALRs) are overexpressed in degenerating brain regions associated with cognitive decline in Alzheimer's disease (AD). The functional consequences of GAL plasticity in AD are unclear. GAL inhibits cholinergic transmission in the hippocampus and impairs spatial memory in rodent models, suggesting GAL overexpression exacerbates cognitive impairment in AD. By contrast, gene expression profiling of individual cholinergic basal forebrain (CBF) neurons aspirated from AD tissue revealed that GAL hyperinnervation positively regulates mRNAs that promote CBF neuronal function and survival. GAL also exerts neuroprotective effects in rodent models of neurotoxicity. These data support the growing concept that GAL overexpression preserves CBF neuron function which in turn may slow the onset of AD symptoms. Further elucidation of GAL activity in selectively vulnerable brain regions will help gauge the therapeutic potential of GALR ligands for the treatment of AD.  相似文献   

3.
Galanin – 25 years with a multitalented neuropeptide   总被引:2,自引:0,他引:2  
There has been increasing interest in the ability of neuropeptides involved in feeding to modulate circuits important for responses to drugs of abuse. A number of peptides with effects on hypothalamic function also modulate the mesolimbic dopamine system (ventral tegmental area and nucleus accumbens). Similarly, common stress-related pathways can modulate food intake, drug reward and symptoms of drug withdrawal. Galanin promotes food intake and the analgesic properties of opiates; thus it initially seemed possible that galanin might potentiate opiate reinforcement. Instead, galanin agonists decrease opiate reward, measured by conditioned place preference, and opiate withdrawal signs, whereas opiate reward and withdrawal are increased in knock-out mice lacking galanin. This is consistent with studies showing that galanin decreases activity-evoked dopamine release in striatal slices and decreases the firing rate of noradrenergic neurons in locus coeruleus, areas involved in drug reward and withdrawal, respectively. These data suggest that polymorphisms in genes encoding galanin or galanin receptors might be associated with susceptibility to opiate abuse. Further, galanin receptors might be potential targets for development of novel treatments for addiction.  相似文献   

4.
The neuropeptide galanin is widely, but not ubiquitously, expressed in the adult nervous system. Its expression is markedly upregulated in many neuronal tissues after nerve injury or disease. Over the last 10 years we have demonstrated that the peptide plays a developmental survival role to subsets of neurons in the peripheral and central nervous systems with resulting phenotypic changes in neuropathic pain and cognition. Galanin also appears to play a trophic role to adult sensory neurons following injury, via activation of GalR2, by stimulating neurite outgrowth. Furthermore, galanin also plays a neuroprotective role to the hippocampus following excitotoxic injury, again mediated by activation of GalR2. In summary, these studies demonstrate that a GalR2 agonist might have clinical utility in a variety of human diseases that affect the nervous system.  相似文献   

5.
The skin, the largest organ of the body, functions as a barrier between the body proper and the external environment, as it is constantly exposed to noxious stressors. During the last few years, the concept of an interactive network involving cutaneous nerves, the neuroendocrine axis, and the immune system has emerged. The neuroendocrine system of the skin is composed of locally produced neuroendocrine mediators that interact with specific receptors. Among these mediators are neuropeptides, including members of the galanin peptide family--galanin, galanin-message-associated peptide, galanin-like peptide, and alarin--which are produced in neuronal as well as nonneuronal cells in the skin. Here we review the expression of the galanin peptides and their receptors in the skin, and the known functions of galanin peptides in different compartments of the skin. We discuss these data in light of the role of the galanin peptide family in inflammation and cell proliferation.  相似文献   

6.
Galanin – 25 years with a multitalented neuropeptide   总被引:2,自引:0,他引:2  
Since the discovery of galanin in 1983, one of the most frequently mentioned possible physiological functions for this peptide is spinal pain modulation. This notion, initially based on the preferential presence of galanin in dorsal spinal cord, has been supported by results from a large number of morphological, molecular and functional studies in the last 25 years. It is generally agreed that spinally applied galanin produces a biphasic dose-dependent effect on spinal nociception through activation of GalR1 (inhibitory) or GalR2 (excitatory) receptors. Galanin also appears to have an inhibitory role endogenously, particularly after peripheral nerve injury when the synthesis of galanin is increased in sensory neurons. In recent years, small-molecule ligands of galanin receptors have been developed, raising the hope that drugs affecting galaninergic transmission may be used as analgesics.  相似文献   

7.
Galanin – 25 years with a multitalented neuropeptide   总被引:3,自引:0,他引:3  
Neuroanatomical localization and physiological properties of galanin suggest that the peptide may be involved in the regulation of seizures. Indeed, administration of galanin receptor agonists into brain areas pertinent to the initiation and propagation of epileptic activity attenuated seizure responses under conditions of animal models of epilepsy; pharmacological blocking of galanin receptors exerted proconvulsant effects. Functional deletion of both galanin and galanin type 1 receptor genes produced transgenic mice with either spontaneous seizure phenotype, or with enhanced susceptibility to seizure stimuli. At the same time, overexpression of galanin in seizure pathways, using both transgenic and virus vector transfection techniques, hindered the epileptic process. Galanin exerts anticonvulsant effects through both type 1 and type 2 receptors, with distinct downstream signaling cascades. Several synthetic agonists of galanin receptors with optimized bioavailability have been synthesized and inhibited experimental seizures upon systemic administration, thus opening an opportunity for the development of galanin-based antiepileptic drugs.  相似文献   

8.
Galanin – 25 years with a multitalented neuropeptide   总被引:2,自引:0,他引:2  
The pathophysiology of depression remains unclear, but involves disturbances in brain monoaminergic transmission. Current antidepressant drugs, which act by enhancing this type of transmission, have limited therapeutic efficacy in a number of patients, and not rarely serious side-effects. Increasing evidence suggests that neuropeptides, including galanin, can be of relevance in mood disorders. Galanin is coexpressed with and modulates noradrenaline and serotonin systems, both implicated in depression. Pharmacological and genetic studies have suggested a role for galanin in depression-like behaviour in rodents, whereby the receptor subtype involved appears to play an important role. Thus, stimulation of GalR1 and/or GalR3 receptors results in depression-like phenotype, while activation of the GalR2 receptor attenuates depression-like behaviour. These findings suggest that galanin receptor subtypes represent targets for development of novel antidepressant drugs.  相似文献   

9.
Galanin – 25 years with a multitalented neuropeptide   总被引:1,自引:0,他引:1  
Galanin, a neuropeptide widely expressed in the central and peripheral nervous systems and in the endocrine system, has been shown to regulate numerous physiological and pathological processes through interactions with three G-protein-coupled receptors, GalR1 through GalR3. Over the past decade, some of the receptor subtype-specific effects have been elucidated through pharmacological studies using subtype selective ligands, as well as through molecular approaches involving knockout animals. In the present review, we summarize the current data which constitute the basis of targeting GalR1, GalR2 and GalR3 for the treatment of various human diseases and pathological conditions, including seizure, Alzheimer's disease, mood disorders, anxiety, alcohol intake in addiction, metabolic diseases, pain and solid tumors.  相似文献   

10.
The p53 protein was discovered 20 years ago, as a cellular protein tightly bound to the large T oncoprotein of the SV40 DNA tumour virus. Since then, research on p53 has developed in many exciting and sometimes unexpected directions. p53 is now known to be the product of a major tumour suppressor gene that is the most common target for genetic alterations in human cancer. The nonmutated wild-type p53 protein (wtp53) is often found within cells in a latent state and is activated in response to various intracellular and extracellular signals. Activation involves an increase in overall p53 protein levels, as well as qualitative changes in the protein. Upon activation, wtp53 can induce a variety of cellular responses, most notable among which are cell cycle arrest and apoptosis. To a great extent, these effects are mediated by the ability of p53 to activate specific target genes. In addition, the p53 protein itself possesses biochemical functions which may facilitate DNA repair as well as apoptosis. The role of p53 in normal development and particularly in carcinogenesis has been elucidated in depth through the use of mouse model systems. The insights provided by p53 research over the years are now beginning to be utilized towards better diagnosis, prognosis and treatment of cancer.  相似文献   

11.
The peroxisomal protein import machinery displays remarkable properties. Be it its capacity to accept already folded proteins as substrates, its complex architecture or its energetics, almost every aspect of this machinery seems unique. The list of unusual properties is still growing as shown by the recent finding that one of its central components, Pex5p, is transiently monoubiquitinated at a cysteine residue. However, the data gathered in recent years also suggest that the peroxisomal import machinery is not that exclusive and similarities with p97/Cdc48-mediated processes and with multisubunit RING-E3 ligases are starting to emerge. Here, we discuss these data trying to distill the principles by which this complex machinery operates. Received 16 July 2008; received after revision 25 August 2008; accepted 29 August 2008  相似文献   

12.
The control of growth and differentiation is a central question not only for developmental biologists but increasingly for medical research as well. The freshwater polyp hydra was one of the first organisms to be used as a model system for the study of this question. It was chosen because of its simple body plan and because it is made up of only seven to eight different cell types. Recent research has shown that despite their simple body plan, cnidarians already exhibit an impressive repertoire of molecular tools which are responsible for the control of growth and differentiation and amongst which peptides appear to play an important role. Received 25 April 2007; received after revision 31 July 2007; accepted 28 August 2007  相似文献   

13.
14.
Thrombin is a plasma serine protease that plays a key role in coagulation and hemostasis but also in thromboembolic diseases. Direct thrombin inhibitors could, therefore, be beneficial for future anticoagulant therapy in the prophylaxis of venous and arterial thrombosis as well as myocardial infarction. However, development of direct thrombin inhibitors has brought researchers more heartache than success. The most recent setback came this year when AstraZeneca withdrew Ximelagatran, the first orally bioavailable direct thrombin inhibitor that had received regulatory approval (France, 2003), after reports of serious hepatoxicity in a fraction of patients. This review describes the status of direct thrombin inhibitors, focusing on drug candidates that are at present in clinical trials. In addition, some more recent research strategies in the design of novel direct thrombin inhibitors are discussed, which may very well contribute to future developments of potent anticoagulants. Received 9 May 2006; received after revision 15 June 2006; accepted 23 August 2006  相似文献   

15.
The trefoil factor family (TFF) comprises a group of small peptides which are highly expressed in tissues containing mucus-producing cells – especially in the mucosa lining the gastrointestinal tract. The peptides seem crucial for epithelial restitution and may work via other pathways than the conventional factors involved in restitution. In vitro studies have shown that the TFFs promote restitution using multiple mechanisms. The peptides also have other functionalities including interactions with the immune system. Moreover, therapeutic effects of the TFFs have been shown in several animal models of gastrointestinal damage. Still it is not clear which of their in vitro properties are involved in the in vivo mode of action. This review describes the TFF family with emphasis on their biological properties and involvement in mucosal protection and repair. Received 10 October 2008; received after revision 07 November 2008; accepted 10 November 2008  相似文献   

16.
Nestin expression – a property of multi-lineage progenitor cells?   总被引:13,自引:0,他引:13  
Tissue-specific progenitor cells are characterized by proliferation and differentiation, but, in contrast to embryonic stem (ES) cells, have limited capacities for self-renewal and no tumourigenic potential. These latter traits make progenitor cells an ideal source for regenerative cell therapies. In this review, we describe what is currently known about nestin, an intermediate filament first identified in neuroepithelial stem cells. During embryogenesis, nestin is expressed in migrating and proliferating cells, whereas in adult tissues, nestin is mainly restricted to areas of regeneration. We show that nestin is abundant in ES-derived progenitor cells that have the potential to develop into neuroectodermal, endodermal and mesodermal lineages. Although it remains unclear what factors regulate in vitro and in vivo expression of nestin, we conclude that nestin represents a characteristic marker of multi-lineage progenitor cells and suggest that its presence in cells may indicate multi-potentiality and regenerative potential.  相似文献   

17.
Summary An apparatus is described for culturing micro-algae in a discontinuous temperature gradient and a continuous light intensity gradient. The apparatus provides 100 different combinations of these abiotic factors at 1 time. The crossgradient culture apparatus is called ecobox.  相似文献   

18.
The first note examines current assumptions about the medieval origins of the sand-glass and underlines the defective nature of our knowledge. The second note suggests a possible etymology for an unusual fifteenth-century English term for the instrument. The third note assembles such evidence as can be found on the price of sand-glasses and the structure of the trade that produced them.  相似文献   

19.
The lysosomal storage disorders encompass more than 40 distinct diseases, most of which are caused by the deficient activity of a lysosomal hydrolase leading to the progressive, intralysosomal accumulation of substrates such as sphingolipids, mucopolysaccharides, and oligosaccharides. Here, we primarily focus on Gaucher disease, one of the most prevalent lysosomal storage disorders, which is caused by an impaired activity of glucocerebrosidase, resulting in the accumulation of the glycosphingolipid glucosylceramide in the lysosomes. Enzyme replacement and substrate reduction therapies have proven effective for Gaucher disease cases without central nervous system involvement. We discuss the promise of chemical chaperone therapy to complement established therapeutic strategies for Gaucher disease. Chemical chaperones are small molecules that bind to the active site of glucocerebrosidase variants stabilizing their threedimensional structure in the endoplasmic reticulum, likely preventing their endoplasmic reticulum-associated degradation and allowing their proper trafficking to the lysosome where they can degrade accumulated substrate to effectively ameliorate Gaucher disease. Received 22 September 2005; received after revision 15 December 2006; accepted 2 February 2006  相似文献   

20.
A variety of recent studies provide a skeptical view on the predictability of stock returns. Empirical evidence shows that most prediction models suffer from a loss of information, model uncertainty, and structural instability by relying on low‐dimensional information sets. In this study, we evaluate the predictive ability of various lately refined forecasting strategies, which handle these issues by incorporating information from many potential predictor variables simultaneously. We investigate whether forecasting strategies that (i) combine information and (ii) combine individual forecasts are useful to predict US stock returns, that is, the market excess return, size, value, and the momentum premium. Our results show that methods combining information have remarkable in‐sample predictive ability. However, the out‐of‐sample performance suffers from highly volatile forecast errors. Forecast combinations face a better bias–efficiency trade‐off, yielding a consistently superior forecast performance for the market excess return and the size premium even after the 1970s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号