共查询到5条相似文献,搜索用时 0 毫秒
1.
A. C. Harvey 《Journal of forecasting》1984,3(3):245-275
A large number of statistical forecasting procedures for univariate time series have been proposed in the literature. These range from simple methods, such as the exponentially weighted moving average, to more complex procedures such as Box–Jenkins ARIMA modelling and Harrison–Stevens Bayesian forecasting. This paper sets out to show the relationship between these various procedures by adopting a framework in which a time series model is viewed in terms of trend, seasonal and irregular components. The framework is then extended to cover models with explanatory variables. From the technical point of view the Kalman filter plays an important role in allowing an integrated treatment of these topics. 相似文献
2.
Robert Fildes 《Journal of forecasting》1983,2(2):137-150
‘Bayesian forecasting’ is a time series method of forecasting which (in the United Kingdom) has become synonymous with the state space formulation of Harrison and Stevens (1976). The approach is distinct from other time series methods in that it envisages changes in model structure. A disjoint class of models is chosen to encompass the changes. Each data point is retrospectively evaluated (using Bayes theorem) to judge which of the models held. Forecasts are then derived conditional on an assumed model holding true. The final forecasts are weighted sums of these conditional forecasts. Few empirical evaluations have been carried out. This paper reports a large scale comparison of time series forecasting methods including the Bayesian. The approach is two fold: a simulation study to examine parameter sensitivity and an empirical study which contrasts Bayesian with other time series methods. 相似文献
3.
This paper compares the properties of a structural model—the London Business School model of the U.K. economy—with a time series model. Information provided by this type of comparison is a useful diagnostic tool for detecting types of model misspecification. This is a more meaningful way of proceeding rather than attempting to establish the superiority of one type of model over another. In lieu of a better structural model, the effects of inappropriate dynamic specification can be reduced by combining the forecasts of both the structural and time series models. For many variables considered here these provide more accurate forecasts than each of the model types alone. 相似文献
4.
Adi Raveh 《Journal of forecasting》1985,4(2):123-131
The Chatfield-Prothero case study in time series, ‘Sales of a company X’, is analysed from a perspective different to that of the authors. More accurate forecasting performance for these data is obtained by adopting the following two tactics: (1) shifting from a problem in transformation of the original series to one of seasonality adjustment; (2) assuming a mixed seasonality type model in contrast to employing a multiplicative assumption. 相似文献
5.
Everette S. Gardner 《Journal of forecasting》1985,4(1):1-28
This paper is a critical review of exponential smoothing since the original work by Brown and Holt in the 1950s. Exponential smoothing is based on a pragmatic approach to forecasting which is shared in this review. The aim is to develop state-of-the-art guidelines for application of the exponential smoothing methodology. The first part of the paper discusses the class of relatively simple models which rely on the Holt-Winters procedure for seasonal adjustment of the data. Next, we review general exponential smoothing (GES), which uses Fourier functions of time to model seasonality. The research is reviewed according to the following questions. What are the useful properties of these models? What parameters should be used? How should the models be initialized? After the review of model-building, we turn to problems in the maintenance of forecasting systems based on exponential smoothing. Topics in the maintenance area include the use of quality control models to detect bias in the forecast errors, adaptive parameters to improve the response to structural changes in the time series, and two-stage forecasting, whereby we use a model of the errors or some other model of the data to improve our initial forecasts. Some of the major conclusions: the parameter ranges and starting values typically used in practice are arbitrary and may detract from accuracy. The empirical evidence favours Holt's model for trends over that of Brown. A linear trend should be damped at long horizons. The empirical evidence favours the Holt-Winters approach to seasonal data over GES. It is difficult to justify GES in standard form–the equivalent ARIMA model is simpler and more efficient. The cumulative sum of the errors appears to be the most practical forecast monitoring device. There is no evidence that adaptive parameters improve forecast accuracy. In fact, the reverse may be true. 相似文献