首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
A combination of classical Coulomb charging, electronic level spacings, spin, and vibrational modes determines the single-electron transfer reactions through nanoscale systems connected to external electrodes by tunnelling barriers. Coulomb charging effects have been shown to dominate such transport in semiconductor quantum dots, metallic and semiconducting nanoparticles, carbon nanotubes, and single molecules. Recently, transport has been shown to be also influenced by spin--through the Kondo effect--for both nanotubes and single molecules, as well as by vibrational fine structure. Here we describe a single-electron transistor where the electronic levels of a single pi-conjugated molecule in several distinct charged states control the transport properties. The molecular electronic levels extracted from the single-electron-transistor measurements are strongly perturbed compared to those of the molecule in solution, leading to a very significant reduction of the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. We suggest, and verify by simple model calculations, that this surprising effect could be caused by image charges generated in the source and drain electrodes resulting in a strong localization of the charges on the molecule.  相似文献   

2.
Electrical generation and absorption of phonons in carbon nanotubes   总被引:1,自引:0,他引:1  
Leroy BJ  Lemay SG  Kong J  Dekker C 《Nature》2004,432(7015):371-374
The interplay between discrete vibrational and electronic degrees of freedom directly influences the chemical and physical properties of molecular systems. This coupling is typically studied through optical methods such as fluorescence, absorption and Raman spectroscopy. Molecular electronic devices provide new opportunities for exploring vibration-electronic interactions at the single molecule level. For example, electrons injected from a scanning tunnelling microscope tip into a metal can excite vibrational excitations of a molecule situated in the gap between tip and metal. Here we show how current directly injected into a freely suspended individual single-wall carbon nanotube can be used to excite, detect and control a specific vibrational mode of the molecule. Electrons tunnelling inelastically into the nanotube cause a non-equilibrium occupation of the radial breathing mode, leading to both stimulated emission and absorption of phonons by successive electron tunnelling events. We exploit this effect to measure a phonon lifetime of the order of 10 ns, corresponding to a quality factor of well over 10,000 for this nanomechanical oscillator.  相似文献   

3.
Propelling single molecules in a controlled manner along an unmodified surface remains extremely challenging because it requires molecules that can use light, chemical or electrical energy to modulate their interaction with the surface in a way that generates motion. Nature's motor proteins have mastered the art of converting conformational changes into directed motion, and have inspired the design of artificial systems such as DNA walkers and light- and redox-driven molecular motors. But although controlled movement of single molecules along a surface has been reported, the molecules in these examples act as passive elements that either diffuse along a preferential direction with equal probability for forward and backward movement or are dragged by an STM tip. Here we present a molecule with four functional units--our previously reported rotary motors--that undergo continuous and defined conformational changes upon sequential electronic and vibrational excitation. Scanning tunnelling microscopy confirms that activation of the conformational changes of the rotors through inelastic electron tunnelling propels the molecule unidirectionally across a Cu(111) surface. The system can be adapted to follow either linear or random surface trajectories or to remain stationary, by tuning the chirality of the individual motor units. Our design provides a starting point for the exploration of more sophisticated molecular mechanical systems with directionally controlled motion.  相似文献   

4.
Pascual JI  Lorente N  Song Z  Conrad H  Rust HP 《Nature》2003,423(6939):525-528
The selective excitation of molecular vibrations provides a means to directly influence the speed and outcome of chemical reactions. Such mode-selective chemistry has traditionally used laser pulses to prepare reactants in specific vibrational states to enhance reactivity or modify the distribution of product species. Inelastic tunnelling electrons may also excite molecular vibrations and have been used to that effect on adsorbed molecules, to cleave individual chemical bonds and induce molecular motion or dissociation. Here we demonstrate that inelastic tunnelling electrons can be tuned to induce selectively either the translation or desorption of individual ammonia molecules on a Cu(100) surface. We are able to select a particular reaction pathway by adjusting the electronic tunnelling current and energy during the reaction induction such that we activate either the stretching vibration of ammonia or the inversion of its pyramidal structure. Our results illustrate the ability of the scanning tunnelling microscope to probe single-molecule events in the limit of very low yield and very low power irradiation, which should allow the investigation of reaction pathways not readily amenable to study by more conventional approaches.  相似文献   

5.
Since it was first suggested that a single molecule might function as an active electronic component, a number of techniques have been developed to measure the charge transport properties of single molecules. Although scanning tunnelling microscopy observations under high vacuum conditions can allow stable measurements of electron transport, most measurements of a single molecule bonded in a metal-molecule-metal junction exhibit relatively large variations in conductance. As a result, even simple predictions about how molecules behave in such junctions have still not been rigorously tested. For instance, it is well known that the tunnelling current passing through a molecule depends on its conformation; but although some experiments have verified this effect, a comprehensive mapping of how junction conductance changes with molecular conformation is not yet available. In the simple case of a biphenyl--a molecule with two phenyl rings linked by a single C-C bond--conductance is expected to change with the relative twist angle between the two rings, with the planar conformation having the highest conductance. Here we use amine link groups to form single-molecule junctions with more reproducible current-voltage characteristics. This allows us to extract average conductance values from thousands of individual measurements on a series of seven biphenyl molecules with different ring substitutions that alter the twist angle of the molecules. We find that the conductance for the series decreases with increasing twist angle, consistent with a cosine-squared relation predicted for transport through pi-conjugated biphenyl systems.  相似文献   

6.
Measurement of the conductance of a hydrogen molecule   总被引:8,自引:0,他引:8  
Recent years have shown steady progress towards molecular electronics, in which molecules form basic components such as switches, diodes and electronic mixers. Often, a scanning tunnelling microscope is used to address an individual molecule, although this arrangement does not provide long-term stability. Therefore, metal-molecule-metal links using break-junction devices have also been explored; however, it is difficult to establish unambiguously that a single molecule forms the contact. Here we show that a single hydrogen molecule can form a stable bridge between platinum electrodes. In contrast to results for organic molecules, the bridge has a nearly perfect conductance of one quantum unit, carried by a single channel. The hydrogen bridge represents a simple test system in which to understand fundamental transport properties of single-molecule devices.  相似文献   

7.
Temirov R  Soubatch S  Luican A  Tautz FS 《Nature》2006,444(7117):350-353
Thin films of molecular organic semiconductors are attracting much interest for use in electronic and optoelectronic applications. The electronic properties of these materials and their interfaces are therefore worth investigating intensively, particularly the degree of electron delocalization that can be achieved. If the delocalization is appreciable, it should be accompanied by an observable electronic band dispersion. But so far only limited experimental data on the intermolecular dispersion of electronic states in molecular materials is available, and the mechanism(s) of electron delocalization in molecular materials are also not well understood. Here we report scanning tunnelling spectroscopy observations of an organic monolayer film on a silver substrate, revealing a completely delocalized two-dimensional band state that is characterized by a metal-like parabolic dispersion with an effective mass of m* = 0.47m(e), where m(e) is the bare electron mass. This dispersion is far stronger than expected for the organic film alone, and arises as a result of strong substrate-mediated coupling between the molecules within the monolayer.  相似文献   

8.
Coulomb blockade and the Kondo effect in single-atom transistors   总被引:7,自引:0,他引:7  
Using molecules as electronic components is a powerful new direction in the science and technology of nanometre-scale systems. Experiments to date have examined a multitude of molecules conducting in parallel, or, in some cases, transport through single molecules. The latter includes molecules probed in a two-terminal geometry using mechanically controlled break junctions or scanning probes as well as three-terminal single-molecule transistors made from carbon nanotubes, C(60) molecules, and conjugated molecules diluted in a less-conducting molecular layer. The ultimate limit would be a device where electrons hop on to, and off from, a single atom between two contacts. Here we describe transistors incorporating a transition-metal complex designed so that electron transport occurs through well-defined charge states of a single atom. We examine two related molecules containing a Co ion bonded to polypyridyl ligands, attached to insulating tethers of different lengths. Changing the length of the insulating tether alters the coupling of the ion to the electrodes, enabling the fabrication of devices that exhibit either single-electron phenomena, such as Coulomb blockade, or the Kondo effect.  相似文献   

9.
Matter structured on a length scale comparable to or smaller than the wavelength of light can exhibit unusual optical properties. Particularly promising components for such materials are metal nanostructures, where structural alterations provide a straightforward means of tailoring their surface plasmon resonances and hence their interaction with light. But the top-down fabrication of plasmonic materials with controlled optical responses in the visible spectral range remains challenging, because lithographic methods are limited in resolution and in their ability to generate genuinely three-dimensional architectures. Molecular self-assembly provides an alternative bottom-up fabrication route not restricted by these limitations, and DNA- and peptide-directed assembly have proved to be viable methods for the controlled arrangement of metal nanoparticles in complex and also chiral geometries. Here we show that DNA origami enables the high-yield production of plasmonic structures that contain nanoparticles arranged in nanometre-scale helices. We find, in agreement with theoretical predictions, that the structures in solution exhibit defined circular dichroism and optical rotatory dispersion effects at visible wavelengths that originate from the collective plasmon-plasmon interactions of the nanoparticles positioned with an accuracy better than two nanometres. Circular dichroism effects in the visible part of the spectrum have been achieved by exploiting the chiral morphology of organic molecules and the plasmonic properties of nanoparticles, or even without precise control over the spatial configuration of the nanoparticles. In contrast, the optical response of our nanoparticle assemblies is rationally designed and tunable in handedness, colour and intensity-in accordance with our theoretical model.  相似文献   

10.
Sloan PA  Palmer RE 《Nature》2005,434(7031):367-371
Using the tip of a scanning tunnelling microscope (STM) to mechanically manipulate individual atoms and molecules on a surface is now a well established procedure. Similarly, selective vibrational excitation of adsorbed molecules with an STM tip to induce motion or dissociation has been widely demonstrated. Such experiments are usually performed on weakly bound atoms that need to be stabilized by operating at cryogenic temperatures. Analogous experiments at room temperature are more difficult, because they require relatively strongly bound species that are not perturbed by random thermal fluctuations. But manipulation can still be achieved through electronic excitation of the atom or molecule by the electron current tunnelling between STM tip and surface at relatively high bias voltages, typically 1-5 V. Here we use this approach to selectively dissociate chlorine atoms from individual oriented chlorobenzene molecules adsorbed on a Si(111)-7 x 7 surface. We map out the final destination of the chlorine daughter atoms, finding that their radial and angular distributions depend on the tunnelling current and hence excitation rate. In our system, one tunnelling electron has nominally sufficient energy to induce dissociation, yet the process requires two electrons. We explain these observations by a two-electron mechanism that couples vibrational excitation and dissociative electron attachment steps.  相似文献   

11.
Organic solar cells based on copper naphthalocyanine(CuNc) and fullerene(C60) were fabricated, and their photovoltaic properties were investigated. C60 and CuNc were used as n-type and p-type semiconductors, respectively. In addition, the effect of Au nanoparticle addition on a hole transfer layer was investigated, and the power conversion efficiency of the devices was improved after blending the Au nanoparticles into the hole transport layer. Nanostructures of Au nanoparticles were investigated by transmission electron microscopy and X-ray diffraction. Energy levels of molecules were calculated by molecular orbital calculations, and the nanostructure and electronic properties were discussed.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

12.
Electrical transport through molecules has been much studied since it was proposed that individual molecules might behave like basic electronic devices, and intriguing single-molecule electronic effects have been demonstrated. But because transport properties are sensitive to structural variations on the atomic scale, further progress calls for detailed knowledge of how the functional properties of molecules depend on structural features. The characterization of two-terminal structures has become increasingly robust and reproducible, and for some systems detailed structural characterization of molecules on electrodes or insulators is available. Here we present scanning tunnelling microscopy observations and classical electrostatic and quantum mechanical modelling results that show that the electrostatic field emanating from a fixed point charge regulates the conductivity of nearby substrate-bound molecules. We find that the onset of molecular conduction is shifted by changing the charge state of a silicon surface atom, or by varying the spatial relationship between the molecule and that charged centre. Because the shifting results in conductivity changes of substantial magnitude, these effects are easily observed at room temperature.  相似文献   

13.
Page CC  Moser CC  Chen X  Dutton PL 《Nature》1999,402(6757):47-52
We have surveyed proteins with known atomic structure whose function involves electron transfer; in these, electrons can travel up to 14 A between redox centres through the protein medium. Transfer over longer distances always involves a chain of cofactors. This redox centre proximity alone is sufficient to allow tunnelling of electrons at rates far faster than the substrate redox reactions it supports. Consequently, there has been no necessity for proteins to evolve optimized routes between redox centres. Instead, simple geometry enables rapid tunnelling to high-energy intermediate states. This greatly simplifies any analysis of redox protein mechanisms and challenges the need to postulate mechanisms of superexchange through redox centres or the maintenance of charge neutrality when investigating electron-transfer reactions. Such tunnelling also allows sequential electron transfer in catalytic sites to surmount radical transition states without involving the movement of hydride ions, as is generally assumed. The 14 A or less spacing of redox centres provides highly robust engineering for electron transfer, and may reflect selection against designs that have proved more vulnerable to mutations during the course of evolution.  相似文献   

14.
使用电子转移的Marcus模型,在B3LYP/6-31G**水平上对3,8,13-三辛烷氧基吐昔烯(3C8OTRX)的分子结构、电子结构及电荷传输性质进行理论研究.计算结果表明,该分子的空穴传输载流子迁移率(μ+=0.15)和传输速率常数 k+(5.49×1012 s-1)均比电子传输约大5.0倍,预示可设计成空穴传输材料.与苯并菲和六氮杂苯并菲比较,空穴传输能力比羟基取代六氮杂苯并菲强,与苯并菲接近,电子传输能力显著增强.  相似文献   

15.
Single-electron circuits of the future, consisting of a network of quantum dots, will require a mechanism to transport electrons from one functional part of the circuit to another. For example, in a quantum computer decoherence and circuit complexity can be reduced by separating quantum bit (qubit) manipulation from measurement and by providing a means of transporting electrons between the corresponding parts of the circuit. Highly controlled tunnelling between neighbouring dots has been demonstrated, and our ability to manipulate electrons in single- and double-dot systems is improving rapidly. For distances greater than a few hundred nanometres, neither free propagation nor tunnelling is viable while maintaining confinement of single electrons. Here we show how a single electron may be captured in a surface acoustic wave minimum and transferred from one quantum dot to a second, unoccupied, dot along a long, empty channel. The transfer direction may be reversed and the same electron moved back and forth more than sixty times-a cumulative distance of 0.25 mm-without error. Such on-chip transfer extends communication between quantum dots to a range that may allow the integration of discrete quantum information processing components and devices.  相似文献   

16.
Electrical conduction through DNA molecules   总被引:23,自引:0,他引:23  
Fink HW  Schönenberger C 《Nature》1999,398(6726):407-410
The question of whether DNA is able to transport electrons has attracted much interest, particularly as this ability may play a role as a repair mechanism after radiation damage to the DNA helix. Experiments addressing DNA conductivity have involved a large number of DNA strands doped with intercalated donor and acceptor molecules, and the conductivity has been assessed from electron transfer rates as a function of the distance between the donor and acceptor sites. But the experimental results remain contradictory, as do theoretical predictions. Here we report direct measurements of electrical current as a function of the potential applied across a few DNA molecules associated into single ropes at least 600 nm long, which indicate efficient conduction through the ropes. We find that the resistivity values derived from these measurements are comparable to those of conducting polymers, and indicate that DNA transports electrical current as efficiently as a good semiconductor. This property, and the fact that DNA molecules of specific composition ranging in length from just a few nucleotides to chains several tens of micrometres long can be routinely prepared, makes DNA ideally suited for the construction of mesoscopic electronic devices.  相似文献   

17.
Kemiktarak U  Ndukum T  Schwab KC  Ekinci KL 《Nature》2007,450(7166):85-88
The scanning tunnelling microscope (STM) relies on localized electron tunnelling between a sharp probe tip and a conducting sample to attain atomic-scale spatial resolution. In the 25-year period since its invention, the STM has helped uncover a wealth of phenomena in diverse physical systems--ranging from semiconductors to superconductors to atomic and molecular nanosystems. A severe limitation in scanning tunnelling microscopy is the low temporal resolution, originating from the diminished high-frequency response of the tunnel current readout circuitry. Here we overcome this limitation by measuring the reflection from a resonant inductor-capacitor circuit in which the tunnel junction is embedded, and demonstrate electronic bandwidths as high as 10 MHz. This approximately 100-fold bandwidth improvement on the state of the art translates into fast surface topography as well as delicate measurements in mesoscopic electronics and mechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM have allowed us to perform thermometry at the nanometre scale. Furthermore, we have detected high-frequency mechanical motion with a sensitivity approaching approximately 15 fm Hz(-1/2). This sensitivity is on par with the highest available from nanoscale optical and electrical displacement detection techniques, and the radio-frequency STM is expected to be capable of quantum-limited position measurements.  相似文献   

18.
Molecular control over Au/GaAs diodes   总被引:2,自引:0,他引:2  
Vilan A  Shanzer A  Cahen D 《Nature》2000,404(6774):166-168
The use of molecules to control electron transport is an interesting possibility, not least because of the anticipated role of molecules in future electronic devices. But physical implementations using discrete molecules are neither conceptually simple nor technically straightforward (difficulties arise in connecting the molecules to the macroscopic environment). But the use of molecules in electronic devices is not limited to single molecules, molecular wires or bulk material. Here we demonstrate that molecules can control the electrical characteristics of conventional metal-semiconductor junctions, apparently without the need for electrons to be transferred onto and through the molecules. We modify diodes by adsorbing small molecules onto single crystals of n-type GaAs semiconductor. Gold contacts were deposited onto the modified surface, using a 'soft' method to avoid damaging the molecules. By using a series of multifunctional molecules whose dipole is varied systematically, we produce diodes with an effective barrier height that is tuned by the molecule's dipole moment. These barrier heights correlate well with the change in work function of the GaAs surface after molecular modification. This behaviour is consistent with that of unmodified metal-semiconductor diodes, in which the barrier height can depend on the metal's work function.  相似文献   

19.
Crystalline supramolecular aggregates consisting of charged organic molecules, held together through metal-cluster-mediated Coulomb interactions, have attracted interest owing to their unusual structural, chemical and electronic properties. Aggregates containing metal cation clusters 'wrapped' by lipophilic molecular anions have, for example, been shown to be kinetically stable and soluble in nonpolar liquids such as saturated hydrocarbons. The formation of supramolecular aggregates can even be exploited to generate aromatic hydrocarbons that carry four negative charges and crystallize in the form of organic poly(metal cation) clusters or helical polymers. Here we report the anaerobic crystallization of an ionic organic aggregate--a contact ion septuple consisting of a fourfold negatively charged 'tripledecker' of three anthracene molecules bridged by four solvated potassium cations. Its electronic ground state is shown experimentally, using temperature-dependent electron paramagnetic resonance spectroscopy, to be a triplet. Although the spins in this biradical ionic solid are separated by a considerable distance, density functional theory calculations indicate that the triplet ground state is 84 kJ mol(-1) more stable than the first excited singlet state. We expect that the successful crystallization of the ionic solid we report here, and that of a covalent organic compound with a triplet ground state at room temperature, will stimulate further attempts to develop new triplet-ground-state materials for practical use.  相似文献   

20.
本文预测一类由碱土金属包围的含平面四价碳的新化合物,通过原子轨道分析和对键临界点的拓扑电子密度分析分别研究了其电荷稳定和成键情况。并且研究了分子的磁性质。这些包含平面四价碳的分子体系通过电子和力学性质得以稳定。D4hSi4B4H4还可以用来稳定平面四价氮离子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号