首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gas hydrates are a significant energy resource and are usually detected by bottom simulating reflection and submarine geochemical anomalies. Authigenic minerals are related to gas hydrates, with carbonates, sulfates and sulfides being important tracing minerals. Authigenic tubular pyrites were collected from offshore southwest Taiwan in the South China Sea, and were investigated by scanning electron microscopy(SEM) and high-resolution transmission electron microscopy (HRTEM). Authigenic tubular pyrite was composed of framboidal pyrite, within which nanosized graphitic carbon of low crystallinity was discovered. The graphitic carbon coexisted with pyrite and had a texture similar to carbon nanotubes and nanocones, indicating that they likely precipitated from carbon supersaturated C-H-O fluid. Pyrite may act as a catalyst for the conversion of CH 4 to C. The discovery of nanosized graphitic carbon in pyrite indicated it was deposited in sediments that were supersaturated with methane fluid. Thus, nanosized graphitic carbon may be another tracing species for submarine gas hydrates. The discovery of nanosized graphitic carbon deposited in a low temperature environment will enlighten our understanding of the laboratory synthesis and industrial production of graphitic carbon.  相似文献   

2.
The geotectonic evolution of the northern South China Sea (SCS) is controlled by the Eurasian, the Pa-cific and the Indian-Australian Plates. With regard to its tectonic evolution, the northern margin composed of faulted terraces and basins and deposited …  相似文献   

3.
21-day in-situ ADCP current and CTD data from an anchored observational station by R/V Shiyan 3 are used to investigate the characteristics of intemal tide in the northern South China Sea continental slope. The results show that tide and internal tide are both mixed type in the observed region and dominated by diurnals; the maximum internal tidal major axes of K1, O1 were largest and reached 11 cm/s, 10 cm/s, respectively, and their current vectors rotate anticlockwise. The 300 m-deep internal tide presents obvious quasi-diurnal oscillation and its average amplitude reaches 50 m. Furthermore, internal tide carried high energy; in the upper layers above 140 m, the kinetic energy of intemal tides accounts for 15%--37% of overall kinetic energy, most of internal tide energy concentrates around the thermocline.  相似文献   

4.
This is a report of the study of the authigenic sulfide minerals and their sulfur isotopes in a sediment core (NH-1) collected on the northern continental slope of the South China Sea, where other geo-physical and geochemical evidence seems to suggest gas hydrate formation in the sediments. The study has led to the findings: (1) the pyrite content in sediments was relatively high and its grain size relatively large compared with that in normal pelagic or hemipelagic sediments; (2) the shallowest depth of the acid volatile sulfide (AVS) content maximum was at 437.5 cm (>2 μmol/g), which was deeper than that of the authigenic pyrite content maximum (at 141.5-380.5 cm); (3) δ 34S of authigenic pyrite was positive (maximum: 15‰) at depth interval of 250-380 cm; (4) the positive δ 34S coincided with pyrite enrichment. Compared with the results obtained from the Black Sea sediments by Jorgen-sen and coworkers, these observations indicated that at the NH-1 site, the depth of the sulfate-methane interface (SMI) would be or once was at about 437.5-547.5 cm and the relatively shallow SMI depth suggested high upward methane fluxes. This was in good agreement with the results obtained from pore water sulfate gradients and core head-space methane concentrations in sediment cores collected in the area. All available evidence suggested that methane gas hydrate formation may exist or may have existed in the underlying sediments.  相似文献   

5.
Internal solitons in the northern South China Sea from insitu observations   总被引:2,自引:0,他引:2  
In this paper, we demonstrate the characteristics of strong internal solitons at the southern edge of Dongsha Islands in the northern South China Sea (SCS) during May-June 1998, using in situ time series data from the conductivity temperature depth (CTD), acoustic Doppler current profiler (ADCP) and thermistor chain. Our measurements indicated that the strongest internal solitons were larger than 90 m in wave amplitude, and propagated approximately westward in traveling direction, with the maximum current speed of about 2 m/s and the period of 10-20 min. The strongest internal solitons occurred noticeably during May 14- 16, 1998, which is consistent with the occurrence period of the diurnal-dominated spring internal tides.  相似文献   

6.
Although the huge potential of the northern South China Sea deepwater basins has been proven by a series of discoveries that followed the exploration breakthrough of well LW 3-1-1, recent drilling and other studies have demonstrated the uniqueness and complicated nature of hydrocarbon accumulations of the deepwater basins there. Based on a review of previous work and the latest exploration activities and studies, the purpose of this paper is to discuss the critical controls for hydrocarbon accumulations in the deepwater basins of the northern South China Sea. A terrestrial-marine transitional coal-bearing source rock is proposed to be the primary source rock for the deepwater basins. A marine source rock, which was first identified as contributing to hydro-carbon generation in this region, probably plays a significant role in the deep-and ultra-deep water basins south to the Pearl River Mouth and Qingdongnan basins. The shelf margin delta depositional systems in the Baiyun Sag, sourced from the Pearl River, are currently primary exploration targets in the deepwater part of the Pearl River Mouth Basin, whereas the western Red River delta-ic-submarine fan depositional systems, initially proven by drilling, are the possible major exploration reservoirs in the Qing-dongnan deepwater areas. Current deepwater exploration targets at the large-sized structural traps and deep and ultra-deep areas in the south of the Pearl River Mouth and Qingdongnan basins will be the future exploration focus. Deepwater exploration activities and relevant fundamental studies, supporting and promoting each other, are of great importance to the national energy supply of China, the basic regional studies of the South China Sea, advancements in technology, and development of related deepwater industries, and will safeguard national sovereignty and territorial integrity.  相似文献   

7.
Shao  Lei  Qiao  PeiJun  Pang  Xiong  Wei  GangJian  Li  QianYu  Miao  WeiLiang  Li  Ang 《科学通报(英文版)》2009,54(2):311-317
The chondrite-normalized REE distribution patterns in recent sediments from the northern South China Sea and surrounding areas are similar, with the HREE values being almost equal to or slightly higher, and the LaN/LuN ratio being lower, than PAAS standards. However, samples from the Xijiang River, a major branch of the Pearl River system, show opposite trends, i.e., with slightly lower HREE values and higher LaN/LuN ratio than PAAS. The distribution of Nd isotopes in sediments from the northern South China Sea was controlled by the Pearl River and the inshore area of South China, respectively. The volume of εNd(0) from inshore areas of southern China is apparently higher than that from the Pearl River, and εNd(0) values in offshore sediments and Taiwan Island are between these values. The results clearly show that εNd(0) volume in the northeastern South China Sea is higher than in the southwest part of the northern South China Sea, indicating different source rock types. The main source rock of the Pearl River sediment is carbonate types and affects sediment deposition in the southwest of the northern South China Sea, while the source rock in the inshore area of southern China, mainly Mesozoic and Cenozoic granites, contributes to sediments in the northeastern area of the northern South China Sea. Due to different source rock types, the HREE values and the volume of εNd(0) in recent sediments supplied by the inshore area of southern China are higher than those from the Pearl River. Over 80% of the rapidly accumulated sediments on the northern slope of the South China Sea in the southeast of Dongsha Islands area were derived from Taiwan Island and from inshore areas of South China, with only less than 20% from the Pearl River. Supported by National Natural Science Foundation of China (Grant Nos. 40276019, 40238060 and 40621063), and National Basic Research Program of China (Grant No. 2007CB819501)  相似文献   

8.
Thermal structures of three deep seismic profiles in the continental margin in the northern South China Sea are calculated, their "thermal" lithospheric thicknesses are evaluated based on the basalt dry solidus, and their rheological structures are evaluated with linear frictional failure criterion and power-law creep equation. "Thermal" lithosphere is about 90 km in thickness in shelf area, and thins toward the slope, lowers to 60-65 km in the lower slope, ocean crust and Xisha Trough. In the mid-west of the studied area, the lithospheric rheological structure in shelf area and Xisha Islands is of four layers: brittle, ductile, brittle and ductile. Because of uprising of heat mantle and thinning of crust and lithosphere in Xisha Trough, the bottom of the upper brittle layer is only buried at 16 km. In the eastern area, the bottom of the upper brittle layer in the north is buried at 20 km or so, while in lower slope and ocean crust, the rheological structure is of two layers of brittle and ductile, and crust and uppermost mantle form one whole brittle layer whose bottom is buried at 30-32 km. Analyses show that the characteristics of rheological structure accord with the seismic result observed. The character of rheological stratification implies that before the extension of the continent margin, there likely was a ductile layer in mid-lower crust. The influence of the existence of ductile layer to the evolution of the continent margin and the different extensions of ductile layer and brittle layer should not be overlooked. Its thickness, depth and extent in influencing continent margin's extension and evolution should be well evaluated in building a dynamic model for the area.  相似文献   

9.
Stable isotope of autogenous oceanic carbonate (e.g., calcite of foraminiferal shells) has become a basic tracer in paleoceanography. Oxygen isotope composi-tion (δ 18O) is generally controlled by factors, such as ice volume and water temperature, and is…  相似文献   

10.
The preservation and dissolution of calcium carbonate (namely calcium carbonate pump) controls the pH of seawater in global oceans by its buffer effect, and in turn plays a significant role in global changes in atmospheric CO2 concentration. The results from measured carbonate contents over the past 2 Ma at ODP Site 1143 in the South China Sea provide high-resolution records to explore the process of the calcium carbonate pump during Quaternary glacial cycles. The results indicate statistically that the highest carbonate accumulation rate leads the lightest δ^18O by about 3.6ka at transitions from glacials to interglacials, and that the strongest carbonate dissolution lags the lightest δ^18O by about 5.6 ka at transitions from interglacials to glacials. The calcium carbonate pump releases CO2 to the at mosphere atthe glacial-interglacial transitions, but transports atmospheric CO2 to deep sea at the interglacial-glacial transitions.The adjustable function of the calcium carbonate pump for the deep-sea CO3^2- concentration directly controls parts of global changes in atmospheric CO2, and contributes the global carbon cycle system during the Quaternary.  相似文献   

11.
Heat flow plays an important role in the study of thermal structure and thermal evolution of continental margin of the northern South China Sea. The analysis of heat flow value shows that margin heat flow in the northern South China Sea is relatively high setting, but the percentage of crustal heat flow is lower than 35% in terrestrial heat flow. The terrestrial heat flow exhibited a current of rise from the Northern Continental Margin to the Southern Central Basin. However, the proportion of crustal heat flow in terrestrial heat flow slowly dropped down in the same direction. It is suggested that the main factor causing high heat flow setting is the moving up of hot material from asthenosphere.  相似文献   

12.
Liu  Chuanlian  Cheng  Xinrong  Zhu  Youhua  Tian  Jun  Xia  Peifen 《科学通报(英文版)》2002,47(10):798-803
Oxygen and carbon isotopic analyses have been carried out on calcareous nannofossils from ODP Site 1143 in the southern South China Sea. The results demonstrate that the δ18O values of calcareous nannofossils for the past 1 Ma vary systematically with those of planktonic and benthic foraminifera from the same site. But the average δ18O value of nannofossils is 1.869‰ higher than that of planktonic foraminifera, and is 3.855‰ lower than that of benthic foarminifera. There are systematic differences between the δ13C values of nannofossils, planktonic foarminifera and benthic foraminifera. The average δ13C of nannofossils is 0.756‰ higher than that of benthic foraminifera, and is 0.460‰ lower than that of planktonic foraminifera. The δ13C values of nannofossils exhibit a significant positive shift beginning near isotope stage 14 and lasting until stage 8. This study also finds that there is a close ralationship between the δ13C of nannofossils and the percentage of Florisphaera profunda. This implies that the δ13C of nannofossils can be used as an indicator of sea water surface paleoproductivity.  相似文献   

13.
Quantitative analysis of benthic foraminifera from ODP Site 1146 in the northern South China Sea (SCS) shows that abundance of Bulimina alazanensis, sometimes up to about 90%, decreased gradually since 3.2 Ma, especially at 2.1 Ma. Abundance of other benthic foraminiferal species, Globobulimina sub-globosa and Cibicidoides wuellerstorfi, increased after 2.1 Ma. Comparison with changes in oxygen and carbon isotopes of planktonic and benthic foraminifera shows that high abundance values of B. alazanensis corresponded with lower values of oxygen isotope, but for carbon isotope, high values of the species were consistent with heavier carbon isotope of benthic foraminifera and lighter carbon isotope of planktonic foraminifera, respectively, and vice versa. Considering factors such as uplift of Bashi Strait, expansion of the North Hemisphere Glaciation, strengthening of East Asian winter mon-soon and variations in oxygen and carbon isotope of foraminifera, changes of B. alazanensis in ODP Site 1146 suggest that the source of deep water masses of the northern South China Sea changed from the warm Pacific deep water with high oxygen content to Pacific Intermediate water with low oxygen content at 2.1 Ma. In addition, the strengthened East Asian winter monsoon resulted in increased pri-mary productivity, high nutrient and suboxic bottom water. Variations in species of B. alazanensis seemed to be unable to tolerate environmental stress induced by deep water masses and productivity changes.  相似文献   

14.
15.
南海表面海温异常对南海季风影响的数值模拟   总被引:6,自引:0,他引:6  
采用P-σ混合坐标系区域气候模式模拟了4-7月南海季风的爆发、演变过程,并进行了3组敏感性数值试验,研究南海表面海温异常对南海季风的影响,得到以下结论:(1)南海4月份海温异常对南海季风的爆发日期影响不大,但对季风爆发后的强度有所影响,异常增温造成南海季风增强,异常降温则南海季风减弱。(2)南海季风爆发和强度的变化与南海本身的海温变化情况有密切的关系,尤其是5月份南海海温异常。5月份南海异常增温可以使南海季风提前爆发,季风增强,南海海温异常降低时,南海季风爆发的时间推迟,季风减弱。(3)南海海温持续异常可以影响南海及中国大陆的高低空环流变化,海温持续异常增温可以使南海季风提前爆发,显地加强南海季风,并有利于南海季风向北推进,但当海温在6月份进一步持续增温时,则有利于季风维持在较南地区,阻碍季风向北发展;当海温持续异常降低时,南海季风推迟爆发,且明显减弱。  相似文献   

16.
The low-velocity layer (LVL), closely related with tectonic activities and dynamic settings, has always been a hot topic in the deep crustal structure studies. The deep seismic (OBS/OBH) and onshore-offshore experiments have been extensively implemented in the northern South China Sea (SCS) since the 1990s. Six seismic profiles were finished on the northern margin of SCS by domestic and international cooperations. The features of crustal structures were revealed and five velocity-inversion layers were discovered. Among them three LVLs with 3.0—3. 5 km·s-1 velocity are located in the sedimentary structure (2.0—6.0 km in depth and 2.0—4. 6 km in thickness) of the Yinggehai Basin and Pearl River Mouth Basin. They were identified by the reflective and refractive phases for their shallow depth. The other two LVLs with 5.5—6.0 km·s-1 velocity generally existed in the middle crust (7.0—18.0 km in depth) with an about 2.5—6.0 km thickness in the transitional crustal structure of the northeastern and northwestern SCS. They were detected by the refractive phase from their overlain and underlying layers. We explored the possible tectonic formation mechanisms combining with previously reported results, which provided evidence for the formation and evolution of SCS.  相似文献   

17.
The low-velocity layer (LVL), closely related with tectonic activities and dynamic settings, has always been a hot topic in the deep crustal structure studies. The deep seismic (OBS/OBH) and onshore-offshore experiments have been extensively implemented in the northern South China Sea (SCS) since the 1990s. Six seismic profiles were finished on the northern margin of SCS by domestic and international cooperations. The features of crustal structures were revealed and five velocity-inversion layers were discovered. Among them three LVLs with 3.0—3.5 km?s-1 velocity are located in the sedimentary structure (2.0—6.0 km in depth and 2.0—4.6 km in thickness) of the Yinggehai Basin and Pearl River Mouth Basin. They were identified by the reflective and refractive phases for their shallow depth. The other two LVLs with 5.5—6.0 km?s-1 velocity generally existed in the middle crust (7.0—18.0 km in depth) with an about 2.5—6.0 km thickness in the transitional crustal structure of the northeastern and northwestern SCS. They were detected by the refractive phase from their overlain and underlying layers. We explored the possible tectonic formation mechanisms combining with previously reported results, which provided evidence for the formation and evolution of SCS.  相似文献   

18.
The winter counter-wind current (also named the South China Sea Warm Current (SCSWC)) in the northern South China Sea (SCS) has been known well for decades, but its mass and momentum origination have not be quantitatively evaluated before. In this paper, the high resolution three-dimensional ocean circulation model is adopted to reproduce the circulation in the northern SCS. The diagnostic analyses are performed to investigate the momentum budget in the northern SCS continental shelf/slope and the momentum propulsion of the SCSWC. It is indicated that the across-shelf pressure gradient and the across-shelf transport are responsible for the formation of the SCSWC, while the along-shelf pressure gradient is balanced by the surface stress, bottom stress, and Coriolis force. The magnitude of the terms in the along-shelf momentum equation is smaller than that in the across-shelf one. The analysis on the momentum budget in the northem SCS will benefit the marine environmental prediction in the future.  相似文献   

19.
Upper pycnocline turbulence in the northern South China Sea   总被引:2,自引:0,他引:2  
The first regional mapping of the averaged turbulent kinetic energy dissipation rate <εp> in the upper pycnocline of the northern South China Sea is presented and discussed.At φ=20°N and to the north of this latitude,<εp> appears to be more than two times larger than that to the south of 20°N.It is suggested that this asymmetry is associated with the predominant northwestward propagation and dissipation of the internal waves originated in the Luzon Strait area.An approximately linear relationship between <εp> and the available potential energy of the waves P IW,suggests a characteristic time of the P IW dissipation of about 6 h.  相似文献   

20.
The South China Sea (SCS) is one of the largest marginal seas in the western Pacific. Its northern part has the features of a passive continental margin. The studies of deep crustal structure in this area are very important for understanding the tectonic nature, evolution history, basin formation of the northern margin, and the origin of the SCS. In the past decades, the deep seismic experiments of crustal studies in the northern SCS have gone through three stages, namely the sonobuoy, two-ship Expanding Spread Profile (ESP), and Ocean Bottom Hydrophone/Seismometer (OBH/OBS). Along the continental slope, the sonobuoy experiments provided useful information about the velocity structure of the upper crust, while the ESP data recorded for the first time the seismic signals from deep crustal structure and Moho interface. And the OBH/OBS profiles revealed the crustal structure in much greater detail. This paper first gives a brief historical review of these deep seismic experiments and studies, then a summary of the latest progress and important research results. The remaining problems and suggestions for further research work are presented as conclusive remarks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号