首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Neurotrophin-evoked depolarization requires the sodium channel Na(V)1.9   总被引:10,自引:0,他引:10  
Blum R  Kafitz KW  Konnerth A 《Nature》2002,419(6908):687-693
Brain-derived neurotrophic factor (BDNF) and other neurotrophins are essential for normal brain function. Many types of neurons in the central nervous system are excited by BDNF or neurotrophin-4/5, an action that has recently been implicated in synaptic plasticity. The mechanisms involved in this transmitter-like action of neurotrophins remains unclear. Here, by screening candidate genes with an antisense messenger RNA expression approach and by co-expressing the receptor tyrosine kinase TrkB and various sodium channels, we demonstrate that the tetrodotoxin-insensitive sodium channel Na(V)1.9 underlies the neurotrophin-evoked excitation. These results establish the molecular basis of neurotrophin-evoked depolarization and reveal a mechanism of ligand-mediated sodium channel activation.  相似文献   

2.
Brain-derived neurotrophic factor (BDNF), like other neurotrophins, is a polypeptidic factor initially regarded to be responsible for neuron proliferation, differentiation and survival, through its uptake at nerve terminals and retrograde transport to the cell body. A more diverse role for BDNF has emerged progressively from observations showing that it is also transported anterogradely, is released on neuron depolarization, and triggers rapid intracellular signals and action potentials in central neurons. Here we report that BDNF elicits long-term neuronal adaptations by controlling the responsiveness of its target neurons to the important neurotransmitter, dopamine. Using lesions and gene-targeted mice lacking BDNF, we show that BDNF from dopamine neurons is responsible for inducing normal expression of the dopamine D3 receptor in nucleus accumbens both during development and in adulthood. BDNF from corticostriatal neurons also induces behavioural sensitization, by triggering overexpression of the D3 receptor in striatum of hemiparkinsonian rats. Our results suggest that BDNF may be an important determinant of pathophysiological conditions such as drug addiction, schizophrenia or Parkinson's disease, in which D3 receptor expression is abnormal.  相似文献   

3.
Q Yan  J Elliott  W D Snider 《Nature》1992,360(6406):753-755
Current ideas about the dependence of neurons on target-derived growth factors were formulated on the basis of experiments involving neurons with projections to the periphery. Nerve growth factor (NGF) and recently identified members of the NGF family of neuronal growth factors, known as neurotrophins, are thought to regulate survival of sympathetic and certain populations of sensory ganglion cells during development. Far less is known about factors that regulate the survival of spinal and cranial motor neurons, which also project to peripheral targets. NGF has not been shown to influence motor neuron survival, and whether the newly identified neurotrophins promote motor neuron survival is unknown. We show here that brain-derived neurotrophic factor (BDNF) is retrogradely transported by motor neurons in neonatal rats and that local application of BDNF to transected sciatic nerve prevents the massive death of motor neurons that normally follows axotomy in the neonatal period. These results show that BDNF has survival-promoting effects on motor neurons in vivo and suggest that BDNF may influence motor neuron survival during development.  相似文献   

4.
5.
BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra   总被引:73,自引:0,他引:73  
Brain-derived neurotrophic factor (BDNF), present in minute amounts in the adult central nervous system, is a member of the nerve growth factor (NGF) family, which includes neurotrophin-3 (NT-3). NGF, BDNF and NT-3 all support survival of subpopulations of neural crest-derived sensory neurons; most sympathetic neurons are responsive to NGF, but not to BDNF; NT-3 and BDNF, but not NGF, promote survival of sensory neurons of the nodose ganglion. BDNF, but not NGF, supports the survival of cultured retinal ganglion cells but both NGF and BDNF promote the survival of septal cholinergic neurons in vitro. However, knowledge of their precise physiological role in development and maintenance of the nervous system neurons is still limited. The BDNF gene is expressed in many regions of the adult CNS, including the striatum. A protein partially purified from bovine striatum, a target of nigral dopaminergic neurons, with characteristics apparently similar to those of BDNF, can enhance the survival of dopaminergic neurons in mesencephalic cultures. BDNF seems to be a trophic factor for mesencephalic dopaminergic neurons, increasing their survival, including that of neuronal cells which degenerate in Parkinson's disease. Here we report the effects of BDNF on the survival of dopaminergic neurons of the developing substantia nigra.  相似文献   

6.
Rose CR  Blum R  Pichler B  Lepier A  Kafitz KW  Konnerth A 《Nature》2003,426(6962):74-78
The neurotrophin receptor TrkB is essential for normal function of the mammalian brain. It is expressed in three splice variants. Full-length receptors (TrkB(FL)) possess an intracellular tyrosine kinase domain and are considered as those TrkB receptors that mediate the crucial effects of brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5). By contrast, truncated receptors (TrkB-T1 and TrkB-T2) lack tyrosine kinase activity and have not been reported to elicit rapid intracellular signalling. Here we show that astrocytes predominately express TrkB-T1 and respond to brief application of BDNF by releasing calcium from intracellular stores. The calcium transients are insensitive to the tyrosine kinase blocker K-252a and persist in mutant mice lacking TrkB(FL). By contrast, neurons produce rapid BDNF-evoked signals through TrkB(FL) and the Na(v)1.9 channel. Expression of antisense TrkB messenger RNA strongly reduces BDNF-evoked calcium signals in glia. Thus, our results show that, unexpectedly, TrkB-T1 has a direct signalling role in mediating inositol-1,4,5-trisphosphate-dependent calcium release; in addition, they identify a previously unknown mechanism of neurotrophin action in the brain.  相似文献   

7.
C Wiesmann  M H Ultsch  S H Bass  A M de Vos 《Nature》1999,401(6749):184-188
Nerve growth factor (NGF) is involved in a variety of processes involving signalling, such as cell differentiation and survival, growth cessation and apoptosis of neurons. These events are mediated by NGF as a result of binding to its two cell-surface receptors, TrkA and p75. TrkA is a receptor with tyrosine kinase activity that forms a high-affinity binding site for NGF. Of the five domains comprising its extracellular portion, the immunoglobulin-like domain proximal to the membrane (TrkA-d5 domain) is necessary and sufficient for NGF binding. Here we present the crystal structure of human NGF in complex with human TrkA-d5 at 2.2 A resolution. The ligand-receptor interface consists of two patches of similar size. One patch involves the central beta-sheet that forms the core of the homodimeric NGF molecule and the loops at the carboxy-terminal pole of TrkA-d5. The second patch comprises the amino-terminal residues of NGF, which adopt a helical conformation upon complex formation, packing against the 'ABED' sheet of TrkA-d5. The structure is consistent with results from mutagenesis experiments for all neurotrophins, and indicates that the first patch may constitute a conserved binding motif for all family members, whereas the second patch is specific for the interaction between NGF and TrkA.  相似文献   

8.
Neurotrophic factors are traditionally thought to be secretory proteins that regulate long-tern survival and differe, ntiation of neurons. Recent studies have revealed a previously unexpected role for these factors in synaptie de velopment ami plasticity in diverse neuronal populations. Here we review experimeuts carried oul in our own laboratory in the last few years.. We have made two important discoveries.First,we were among the first to report that brain-derived. neurotrophie faclor (BDNF) facilitates hippocampal hmg-term potentiation (LTP), a form of synaptic plaslicity believed to be involved in learning and memory. BDNF modulates LTP al CAI synapses by enhaneing synaptic responses to high frequency, tetanic slimulalion. This is achieved primafily by facilitating synaptie vesicle doeking, possibly due to an in crease in the levels of the vesicle prolein synaptobrevin and synaptoplysin in the nerve terminals. Gene knockout study demonstrates thai the effects of BDNF are primarily mediated through presynaptic mechanisms. Second, we demonstrated a form of long-term, neurotrophin-mediated synaptic regulation. We showed that long-term treatment of the neuromuscu lar synapses with neurotrophin-3 (NT3) resulted in an enhancement of both spontaneous and evoked synaptic currcuts, as well as profound changes in thc number of synaptic varicosities and syuaptic vesicle proteins in motoneurons, all of which are indicative of more mature synapses. Our current work addresses the following issues:(i) activity-dependent trafficking of neurotrophin receptors, and its role in synapse-specific modulation; (ii) signal transduction mechanisms medialing the acute enhancement of synaplic transmission by neurotrophins; (iii) acute and long-tenn synaptie actions of the GDNF family; (iv) role of BDNF in late-phase LTP and in the development of hippocampal circuit.  相似文献   

9.
Li Y  Jia YC  Cui K  Li N  Zheng ZY  Wang YZ  Yuan XB 《Nature》2005,434(7035):894-898
Brain-derived neurotrophic factor (BDNF) is known to promote neuronal survival and differentiation and to guide axon extension both in vitro and in vivo. The BDNF-induced chemo-attraction of axonal growth cones requires Ca2+ signalling, but how Ca2+ is regulated by BDNF at the growth cone remains largely unclear. Extracellular application of BDNF triggers membrane currents resembling those through TRPC (transient receptor potential canonical) channels in rat pontine neurons and in Xenopus spinal neurons. Here, we report that in cultured cerebellar granule cells, TRPC channels contribute to the BDNF-induced elevation of Ca2+ at the growth cone and are required for BDNF-induced chemo-attractive turning. Several members of the TRPC family are highly expressed in these neurons, and both Ca2+ elevation and growth-cone turning induced by BDNF are abolished by pharmacological inhibition of TRPC channels, overexpression of a dominant-negative form of TRPC3 or TRPC6, or downregulation of TRPC3 expression via short interfering RNA. Thus, TRPC channel activity is essential for nerve-growth-cone guidance by BDNF.  相似文献   

10.
Functional regeneration of sensory axons into the adult spinal cord   总被引:34,自引:0,他引:34  
Ramer MS  Priestley JV  McMahon SB 《Nature》2000,403(6767):312-316
The arrest of dorsal root axonal regeneration at the transitional zone between the peripheral and central nervous system has been repeatedly described since the early twentieth century. Here we show that, with trophic support to damaged sensory axons, this regenerative barrier is surmountable. In adult rats with injured dorsal roots, treatment with nerve growth factor (NGF), neurotrophin-3 (NT3) and glial-cell-line-derived neurotrophic factor (GDNF), but not brain-derived neurotrophic factor (BDNF), resulted in selective regrowth of damaged axons across the dorsal root entry zone and into the spinal cord. Dorsal horn neurons were found to be synaptically driven by peripheral nerve stimulation in rats treated with NGF, NT3 and GDNF, demonstrating functional reconnection. In behavioural studies, rats treated with NGF and GDNF recovered sensitivity to noxious heat and pressure. The observed effects of neurotrophic factors corresponded to their known actions on distinct subpopulations of sensory neurons. Neurotrophic factor treatment may thus serve as a viable treatment in promoting recovery from root avulsion injuries. I  相似文献   

11.
Nerve growth factor (NGF) is a member of an expanding family of neurotrophic factors (including brain-derived neurotrophic factor and the neurotrophins) that control the development and survival of certain neuronal populations both in the peripheral and in the central nervous systems. Its biological effects are mediated by a high-affinity ligand-receptor interaction and a tyrosine kinase signalling pathway. A potential use for NGF and its relatives in the treatment of neurological disorders such as Alzheimer's disease and Parkinson's disease requires an understanding of the structure-function relationships of NGF. NGF is a dimeric molecule, with 118 amino acids per protomer. We report the crystal structure of the murine NGF dimer at 2.3-A resolution, which reveals a novel protomer structure consisting of three antiparallel pairs of beta strands, together forming a flat surface. Two subunits associate through this surface, thus burying a total of 2,332 A. Four loop regions, which contain many of the variable residues observed between different NGF-related molecules, may determine the different receptor specificities. A clustering of positively charged side chains may provide a complementary interaction with the acidic low-affinity NGF receptor. The structure provides a model for rational design of analogues of NGF and its relatives and for testing the NGF-receptor recognition determinants critical for signal transduction.  相似文献   

12.
Coull JA  Beggs S  Boudreau D  Boivin D  Tsuda M  Inoue K  Gravel C  Salter MW  De Koninck Y 《Nature》2005,438(7070):1017-1021
Neuropathic pain that occurs after peripheral nerve injury depends on the hyperexcitability of neurons in the dorsal horn of the spinal cord. Spinal microglia stimulated by ATP contribute to tactile allodynia, a highly debilitating symptom of pain induced by nerve injury. Signalling between microglia and neurons is therefore an essential link in neuropathic pain transmission, but how this signalling occurs is unknown. Here we show that ATP-stimulated microglia cause a depolarizing shift in the anion reversal potential (E(anion)) in spinal lamina I neurons. This shift inverts the polarity of currents activated by GABA (gamma-amino butyric acid), as has been shown to occur after peripheral nerve injury. Applying brain-derived neurotrophic factor (BDNF) mimics the alteration in E(anion). Blocking signalling between BDNF and the receptor TrkB reverses the allodynia and the E(anion) shift that follows both nerve injury and administration of ATP-stimulated microglia. ATP stimulation evokes the release of BDNF from microglia. Preventing BDNF release from microglia by pretreating them with interfering RNA directed against BDNF before ATP stimulation also inhibits the effects of these cells on the withdrawal threshold and E(anion). Our results show that ATP-stimulated microglia signal to lamina I neurons, causing a collapse of their transmembrane anion gradient, and that BDNF is a crucial signalling molecule between microglia and neurons. Blocking this microglia-neuron signalling pathway may represent a therapeutic strategy for treating neuropathic pain.  相似文献   

13.
14.
A Hohn  J Leibrock  K Bailey  Y A Barde 《Nature》1990,344(6264):339-341
The survival and functional maintenance of vertebrate neurons critically depends on the availability of specific neurotrophic factors. So far, only two such factors, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been characterized and shown to have the typical features of secretory proteins. This characterization has been possible because of the extraordinarily large quantities of NGF in some adult tissues, and the virtually unlimited availability of brain tissue from which BDNF was isolated. Both NGF and BDNF promote the survival of distinct neuronal populations in vivo and are related in their primary structure, suggesting that they are members of a gene family. Although there is little doubt about the existence of other such proteins, their low abundance has rendered their identification and characterization difficult. Taking advantage of sequence identities between NGF and BDNF, we have now identified a third member of this family, which we name neurotrophin-3. Both the tissue distribution of the messenger RNA and the neuronal specificity of this secretory protein differ from those of NGF and BDNF. Alignment of the sequences of the three proteins reveals a remarkable number of amino acid identities, including all cysteine residues. This alignment also delineates four variable domains, each of 7-11 amino acids, indicating structural elements presumably involved in the neuronal specificity of these proteins.  相似文献   

15.
Apoptosis in the nervous system   总被引:135,自引:0,他引:135  
Yuan J  Yankner BA 《Nature》2000,407(6805):802-809
Neuronal apoptosis sculpts the developing brain and has a potentially important role in neurodegenerative diseases. The principal molecular components of the apoptosis programme in neurons include Apaf-1 (apoptotic protease-activating factor 1) and proteins of the Bcl-2 and caspase families. Neurotrophins regulate neuronal apoptosis through the action of critical protein kinase cascades, such as the phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase pathways. Similar cell-death-signalling pathways might be activated in neurodegenerative diseases by abnormal protein structures, such as amyloid fibrils in Alzheimer's disease. Elucidation of the cell death machinery in neurons promises to provide multiple points of therapeutic intervention in neurodegenerative diseases.  相似文献   

16.
Temporal hyperacuity in single neurons of electric fish   总被引:1,自引:0,他引:1  
M Kawasaki  G Rose  W Heiligenberg 《Nature》1988,336(6195):173-176
Behavioural studies have revealed that animals can resolve temporal disparities in the microsecond range. This resolution is far superior to that of individual receptors, and it must therefore be achieved through central neuronal mechanisms. It is unclear, however, whether such sensitivity ever emerges at the level of single neurons, or whether it is apparent only at the behavioural level through the collective action of many less-sensitive neurons. We have found that single neurons in the pre-pacemaker nucleus of a weakly electric fish are sensitive to temporal disparities as small as 1 microsecond, the highest temporal sensitivity ever observed at the single-neuron level. The remarkable temporal resolution of these pre-pacemaker neurons results from a high degree of spatial convergence of afferent inputs. These neurons represent the final elements of a sensory hierarchy and directly control the jamming avoidance response by which these fish regulate the frequency of their electric organ discharges.  相似文献   

17.
研究旨在探索海马可塑性改变在产前应激(PS)子代大鼠抑郁样行为中的作用。通过建立大鼠产前束缚应激模型,采用强迫游泳实验检测子代大鼠的抑郁样行为,快速Golgi染色观察海马CA1区锥体细胞顶树突的树突棘密度,Western-blotting检测海马脑源性神经营养因子(BDNF)的表达。结果发现,与对照组相比较,PS组雌、雄子代大鼠强迫游泳实验(FST)中的不动时间均明显增加,有统计学差异(P0.05),而且PS组雌性子代大鼠的不动时间较雄性子代更加延长(P0.05)。PS组雌、雄子代大鼠海马CA1区锥体细胞的顶树突棘密度均较对照组显著减少(P0.05),PS组雌、雄子代之间无统计学差异。PS组雌、雄子代大鼠海马的BDNF表达均较对照组显著减少(P0.05),PS组雌、雄子代之间亦无显著性差异。这些结果说明海马CA1区锥体细胞的树突棘密度减少和海马BDNF表达减少参与PS导致的子代大鼠抑郁样行为的发生。  相似文献   

18.
H Brew  D Attwell 《Nature》1987,327(6124):707-709
Glutamate is taken up avidly by glial cells in the central nervous system. Glutamate uptake may terminate the transmitter action of glutamate released from neurons, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.  相似文献   

19.
Three distinct classes of protein kinases have been shown to regulate Ca2+ current in excitable tissues. Cyclic AMP-dependent protein kinase mediates the action of noradrenaline on the Ca2+ current of cardiac muscle cells. Cyclic GMP-dependent protein kinase mediates the serotonin-induced modulation of the Ca2+ current in identified snail neurons. The Ca2+/diacylglycerol-dependent protein kinase (protein kinase C) has also been found to regulate Ca2+ currents of neurons. However, no neurotransmitter has yet been shown to regulate Ca2+ current through the activation of protein kinase C. We now report that cholecystokinin, a widely occurring neuropeptide which is present in molluscan neuron, modulates the Ca2+ current in identified neurons of the snail Helix aspersa, and that this effect appears to be mediated by protein kinase C. Specifically, sulphated cholecystokinin octapeptide 26-33 (CCK8), activators of protein kinase C, and intracellular injection of protein kinase C, all shorten the Ca2+-dependent action potential and decrease the amplitude of the Ca2+ current in these cells. All these effects are not reversible within the duration of the experiments. Moreover, intracellular injections of low concentrations of protein kinase C, which are ineffective by themselves, enhance the effectiveness of low concentrations of CCK8 on the Ca2+ current.  相似文献   

20.
M Sendtner  B Holtmann  R Kolbeck  H Thoenen  Y A Barde 《Nature》1992,360(6406):757-759
Motoneurons innervating the skeletal musculature were among the first neurons shown to require the presence of their target cells to develop appropriately. But the characterization of molecules allowing motoneuron survival has been difficult. Ciliary neurotrophic factor prevents the death of motoneurons, but its gene is not expressed during development. Although the presence of a neurotrophin receptor on developing motoneurons has suggested a role for neurotrophins, none could be shown to promote motoneuron survival in vitro. We report here that brain-derived neurotrophic factor can prevent the death of axotomized motoneurons in newborn rats, suggesting a role for this neurotrophin for motoneuron survival in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号