共查询到17条相似文献,搜索用时 78 毫秒
1.
谌昌强 《西南师范大学学报(自然科学版)》2013,38(8):136-140
提出一种基于主成分分析和球结构支持向量机的人耳识别方法.首先将人耳从侧面人脸中提取出来,然后采用主成分分析方法对人耳图像进行特征提取,最后采用球结构支持向量及对人耳图像进行训练和识别.与传统的多分类方法相比,该分类方法识别性能更高,这为非打扰式生物特征识别提供了一条有效途径. 相似文献
2.
针对人耳图像自身的特点并通过对现有方法的研究,提出了一种先利用LDA/GSVD算法对样本图像进行特征提取,然后运用SVM分类器对样本向量进行分类的人耳识别方法.此外,还对线性判别分析、广义奇异值分解和支持向量机的相关内容做了简要介绍.实验表明,LDA/GSVD很好地解决了在高维、小样本的情况下,使用Fisher线性鉴别分析的特征提取方法存在的病态奇异问题,把它与支持向量机有机地结合起来,构成了一种有效的人耳识别新方法. 相似文献
3.
支持向量机的说话人识别采用对音子的置信度进行综合的原理来完成对说话人身份的确认.以音子的置信度矢量为基础,分别采用支持向量机方法和平均值方法对音子的置信度进行综合,通过等错误率方面的研究发现,采用支持向量机方法大大低于平均值方法所获得的等错误率,等错误率大致可以从28%降至23%,而系统的复杂度仅略微地提高. 相似文献
4.
基于核主成分分析和支持向量机的飞机舱音信号识别 总被引:1,自引:0,他引:1
为了提高飞机事故原因的调查准确性与实时性,提出了一种基于核主成分分析和支持向量机的舱音背景声识别方法.首先提取和分析了飞机驾驶舱话音记录器中所记录背景声信号的特征参数,然后分别以多项式核函数、sigmoid核函数和高斯核函数3种核函数作为内积,对3种核函数的降维特性进行了对比分析,最后将核方法与支持向量机结合,实现对舱音背景声的分类识别.实验结果表明:通过基于不同核函数的主成分分析方法与支持向量机的结合比较,确定以高斯核函数为内积的SVM分类方法具有较好的分类效果. 相似文献
5.
探讨了最小二乘支持向量机时间序列预测的方法,提出了用核主成分分析提取主元,然后用最小二乘支持向量机进行预测.通过实验表明,这种方法得到的效果优于没有特征提取的预测.同时与主成分分析提取特征相比,用核主成分分析效果更好. 相似文献
6.
在核函数基础上,提出了一种融合支持向量机和核主元分析的核PCA支持向量机综合集成分类方法,给出了算法实现步骤。仿真实验表明了该算法具有很好的分类性能,特别适合于消除噪声情形的模式识别问题。 相似文献
7.
基于核主元分析与支持向量机的监控诊断方法及其应用 总被引:3,自引:0,他引:3
为了及时反映密闭鼓风炉冶炼过程状态,实现对密闭鼓风炉炉况的监控与诊断,提出核主元分析和多支持向量机分类的相结合的过程监控与故障诊断方法.其原理是:首先,用核主元分析方法提取过程数据特征,建立核主元分析的监控模型;然后,将代表过程特征的核主元送入多支持向量机分类器中,利用"一对其余"算法对故障进行诊断与分类.实验结果表明,所提出的方法与传统的主元分析方法相比,整个样本集的可分性变大,分类正确率提高,能更准确地诊断炉子的各种故障,可有效地用于密闭鼓风炉冶炼过程的故障诊断. 相似文献
8.
人耳图像的自动识别是一种新的生物特征识别技术.将主元分析法(PCA)应用于人耳图像识别,分别应用BP神经网络和最近邻域法进行分类识别,给出了具体的网络设计与性能比较分析.实验结果表明,应用PCA方法提取人耳图像特征,选择合适的分类器和网络结构,可以取得满意的识别效果. 相似文献
9.
基于主元分析与支持向量机的人脸识别方法 总被引:27,自引:1,他引:27
基于支持向量机(SVM)在处理小样本,高维数及泛化性能等强方面的优势,提出了一种基于主元分析(PCA)与SVM的人脸识别方法,利用PCA方法对人脸图像进行特征提取,再利用SVM与最近邻分类器相结合的策略对特征向量进行分类识别,剑桥ORL的人极数据库的仿真结构验证了本算法是有效的。 相似文献
10.
说话人识别技术目前已经成为身份认证及人工智能领域研究的一个热点,解决噪声环境下的说话人识别问题具有重要的理论价值和深远的实用意义.针对这一问题,提出了一种基于支持向量机和小波分析的识别方法及其框架模型,并且设计与实现了一个识别系统,即利用小波阈值去噪法将语音信号和噪声分离,实现语音增强,最终采用SVM分类器基于样本进行训练和测试,实现说话人的分类识别. 相似文献
11.
LI Zhanchun LI Zhitang LIU Bin 《武汉大学学报:自然科学英文版》2006,11(6):1769-1772
This article presents an anomaly detection system based on principal component analysis (PCA) and support vector machine (SVM). The system first creates a profile defining a normal behavior by frequency-based scheme, and then compares the similarity of a current behavior with the created profile to decide whether the input instance is norreal or anomaly. In order to avoid overfitting and reduce the computational burden, normal behavior principal features are extracted by the PCA method. SVM is used to distinguish normal or anomaly for user behavior after training procedure has been completed by learning. In the experiments for performance evaluation the system achieved a correct detection rate equal to 92.2% and a false detection rate equal to 2.8%. 相似文献
12.
为了提高人脸图像的识别率、识别效率和鲁棒性,提出一种基于主成分分析(Principal Component Analysis, PCA)和支持向量机(support Vector machine,SVM)的鲁棒稀疏线性判别分析方法,通过ORL和YaleB人脸库、COIL20物体库和UCI机器学习库中部分数据集,将本文方法与线性判别分析、鲁棒线性判别分析、基于 范数和巴氏距离的鲁棒线性判别分析、鲁棒自适应线性判别分析和鲁棒稀疏线性判别分析等六种方法进行比较。实验结果表明,在ORL人脸库、COIL20物体库和UCI机器学习库的部分数据集中,在原始图像条件下,本文方法的识别率均值依次为92.80%,97.76%和89.61%,均高于其它5种方法。在YaleB人脸库加入椒盐噪声的条件下,本文方法的识别率均值为81.35%,比其它五种方法高1.37%以上。 相似文献
13.
提出一种更简洁的用于主要成分分析 (PCA)及其非线性分析的公式 .给出一个含有规则化项的原始权空间的约束最大优化问题 ,应用核技巧来解决其对偶问题 .该公式同最小二乘支持向量机 (LS SVM )分类器相似 .遵循常规的SVM方法 ,将输入空间的数据映射到高维特征空间 ,然后使用核技巧 ,利用主对偶约束最大优化来解释线性和非线性PCA分析问题 .其优点在于对偶问题适用于高维输入空间 ,而原始问题在N很大时能被更好地解决 . 相似文献
14.
基于核函数主元分析的机械设备状态识别 总被引:4,自引:0,他引:4
研究了核函数主元分析在机械故障模式分类中的应用,通过计算原始空间的内积核函数实现原始数据空间到高维数据空间的非线性映射,再对高维数据作主元分析,求取更易于分类的核函数主元,实验表明,核函数主元分析更适于提取故障信号的非线性特征,能有效区分不同的故障模式,可以应用于机械设备的状态识别。 相似文献
15.
为了提高蛋白质O-糖基化位点的预测准确率,提出了把核主成分分析(KPCA)与支持向量机(SVM)相结合的方法。实验样本用稀疏编码方式编码,窗口长度为21。首先,用核主成分分析提取了样本的核主成分(特征);然后,在特征空间中用改进的支持向量机(ISVM)进行分类(预测)。在使用支持向量机分类时,设置了一个边界系数来减少运算的复杂度。实验结果表明,使用KPCA ISVM的方法预测的效果优于PCA SVM的预测效果。预测准确率为87%。更进一步,用不同长度的样本做实验(w=5,7,9,11,21,31,41,51),使用多数投票法综合各子分类器的优势。结果表明,组合分类器的预测准确率优于子分类器的预测准确率,预测准确率为88%。 相似文献
16.
目标的雷达散射截面(RCS)包含了丰富的目标类别信息,如何有效利用目标RCS特征对空间目标的雷达识别具有重要意义.文中提取中心矩作为特征向量,采用主分量分析(PCA)进一步进行特征压缩,利用支撑矢量机(SVM)分类算法来实现识别.基于实测数据的仿真实验结果表明,该方法具有较好的识别性能和推广能力. 相似文献
17.
阐述虹膜作为生物测定学特征用于身份识别具有得天独厚的优势,虹膜识别在场所或资源的安全控制等方面具有重要的应用价值.提出一种新的虹膜识别方法,该方法利用核主成分分析(KPCA)提取虹膜的纹理特征,通过竞争学习寻找其中最优的KPCA特征,形成虹膜编码,最后通过计算编码之间的方差倒数加权欧氏距离对虹膜进行识别.实验结果表明,该方法计算速度快,提取特征的效果好,对环境的适应性强,可用于实际的身份鉴别系统. 相似文献