首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
以人脸表情视频序列为研究对象,介绍了人脸表情识别的一般过程,给出了基于SVM的人脸表情识别方法,讨论了面部表情强度度量方法。通过分析人脸表情的变化,在L-K光流算法基础上应用修正的特征点跟踪方法提取面部特征信息,使用SVM建立人脸表情模型和强度模型,进行表情识别,并对高兴表情进行强度等级分类。实验结果证明了提出方法的有效性。  相似文献   

2.
针对LBP算法在提取全局特征时不具有针对性的缺点,提出一种基于Harris-SIFT特征点检测的LBP人脸表情识别算法。该算法引入Harris得到表情图像的角点,同时运用SIFT检测算法得到图像的局部最大最小值,通过Harris算法对SIFT特征点进行过滤,得到表情图像的准确感兴趣点;设计特征点最大区域选取法和特征点周围邻域选取法,将选取的区域作为LBP特征提取的输入图像;运用SVM多分类器得到每种表情的识别率。实验表明,该算法能更有效地提取表情特征,达到较好的识别效果。  相似文献   

3.
基于LBP特征和稀疏表示的新生儿疼痛表情识别   总被引:1,自引:0,他引:1  
面部表情被认为是新生儿疼痛评估的可靠指标。文中提出一种基于加权局部二元模式(LBP)特征描述符和稀疏表示分类器的新生儿疼痛表情识别方法。首先,经归一化后的面部图像采用一个特征向量来描述,这个特征向量是通过串接组合所有局部图像块的LBP特征图的加权直方图所得到的直方图序列。然后,采用主成分分析(PCA)方法对训练样本及测试样本图像的特征向量进行降维。最后,采用基于稀疏表示的分类器将测试样本图像的表情分为4类:平静、哭、轻度疼痛、剧烈疼痛。文中研究目的是通过利用基于计算机的图像分析技术来辅助临床医生评估新生儿疼痛。在新生儿面部图像数据库上进行的实验结果表明了该算法的有效性,表情分类的平均识别率高达84.50%。  相似文献   

4.
基于SVM信息融合方法的人脸表情识别   总被引:1,自引:0,他引:1  
提出一种基于支持向量机(SVM)的信息融合方法进行人脸表情识别.该方法首先对 预处理后的人脸图像进行局部特征和整体特征的提取;然后用最小距离分类器、最近邻距离 分类器、最大相关分类器、径向基函数(RBF)神经网络分类器进行表情识别;最后构造一 个三阶的多项式支持向量机对多个分类器的输出进行决策融合以达到人脸表情识别的目的.  相似文献   

5.
基于人脸局部特征和SVM的表情识别   总被引:1,自引:0,他引:1  
提出了一种基于人脸局部特征的表情识别方法.首先选取人脸重要的局部特征,对得到的局部特征进行主成分分析,然后用支持向量机(SVM)设计局部特征分类器来确定测试表情图像中局部特征,同时设计支持向量机(SVM)表情分类器,确定表情图像的所属类别.对JAFFE人脸图像数据库进行仿真实验.结果表明,该方法要优于一般的基于整体特征的人脸表情识别方法.  相似文献   

6.
人脸表情识别就是让计算机按照人类的思维理解表情,是人机交互的重要组成,然而随着深度学习的迅速发展,深度学习技术在人脸表情领域的研究也成为研究热点,所以对深度学习技术在表情识别中的应用及取得的成果进行分析。首先总结了几种常用表情数据集;然后从特征提取和特征分类两方面对基于深度学习的表情识别方法进行了分类,并从网络改进方面分析了基于深度学习的表情识别中的几种网络改进方法;最后阐述了表情识别这一领域中面临的挑战和未来发展。  相似文献   

7.
基于SVM的新生儿疼痛表情识别   总被引:1,自引:0,他引:1  
近十年来新生儿疼痛引起医护人员的广泛关注.由于新生儿不能自述疼痛的感受,疼痛评估成为新生儿科学中最具挑战性的一个难题.新生儿"疼痛面容"(蹙眉、挤眼、鼻唇沟加深、张口)被认为是最可靠的疼痛指标,且持续时间最长,因而被国际上常用的新生儿疼痛评估工具作为评估指标.然而,这些疼痛评估工具往往受到临床医护人员主观因素的影响.文中旨在解决上述问题,提出利用支持向量机(SVM)技术对新生儿疼痛与非疼痛面部表情进行分类识别.对210幅照片的表情图像进行了研究,比较了线性核函数SVM、多项式核函数SVM(d=2,3,4)以及径向基函数SVM等5种不同分类器的性能.实验结果表明,阶数d=3的多项式核函数SVM分类器的性能最佳,对疼痛和非疼痛表情分类的识别率达到93.33%,对疼痛与安静表情的分类识别率为94.17%,对疼痛与哭表情的分类识别率为83.13%,初步具备了在新生儿疼痛评估中的潜在应用价值.  相似文献   

8.
当前人脸检测系统主要使用的是基于主成分分析算法和神经网络技术,本文提出了识别不同特征点的另一种技术,所提出的识别系统用来实现特征提取、主成分分析和人工神经网络,即用特征脸和主成分分析算法进行人脸识别.在主成分分析算法中,通过识别初始人脸图像集得到特征向量和特征脸,然后这些人脸被投射到特征脸上以计算权重,这些权重建立人脸数据库以便通过神经网络进行人脸识别.测试结果表明,其准确率达82.1%,达到了理想效果.  相似文献   

9.
人脸表情识别是模式识别与人工智能领域的研究热点之一,针对传统LBP方法的不足,提出了一种基于区域块LBP的人脸表情识别方法:先在人脸面部分割出与表情相关的眉毛、眼睛、鼻子和嘴巴等关键区域;再从这些关键表情区域提取表情特征,避免了在整个面部提取特征耗时的缺陷,同时有效地降低了特征维数;最后利用最近邻分类器给出识别结果,通过实验验证了本文算法在识别性能和时间性能上的优势.  相似文献   

10.
面部表情识别是机器理解人类情感的前提,是改善人机交互关系的关键。首先,按照视频图像中面部表情识别的流程,综述了表情识别的3个阶段:人脸检测、表情特征提取、表情分类。重点介绍了表情特征提取和表情分类中所采用算法的原理、优缺点及应用场合,并给出了部分算法的识别率对比结果。其次,对人机交互中的微表情识别及表情识别的鲁棒性研究也做了介绍。最后总结了面部表情识别研究中存在的问题及难点,探讨了该领域值得进一步研究的问题。  相似文献   

11.
由于人类个体面部形态各种各样,使得不同人在表达同一感情时有可能产生较大的视觉差异,为了减弱这种内类视觉差异性对人脸表情识别产生的影响,该文提出一种分层多任务学习的人脸表情识别方法,该方法以现有深度卷积神经网络模型为基础,构造双层树分类器以替换输出层的平面softmax分类器,构建深度多任务学习框架,通过利用人脸表情标签和人脸标签共同学习更具辨识力的深度特征,将知识从相关人脸识别任务中迁移过来,从而减弱面部形态对表情识别的影响,提高表情识别性能。实验结果表明,相较于VGGnet,Googlenet和Resnet深度模型,文中提出的方法均提高了人脸表情识别率,且成功推广到面瘫表情识别问题中。  相似文献   

12.
利用智能手机加速度传感器信号,提出一种改进的动作识别方法以降低传统动作识别方法的复杂程度,提高识别率。在特征提取时用盲选法,即用PCA(principal component analysis)进行特征值的降维和去除多维间的干扰,而所选特征没有对应的物理意义;并在分类识别中将遗传算法应用到SVM(support vector machine)分类器参数优化中。通过实验表明,该方法能够对日常的走路、站立、跑及上下楼等动作进行准确的识别。  相似文献   

13.
针对传统表情识别系统不能充分提取关键子区域及有效特征的缺陷,设计了基于关键子区域及特征提取的表情识别系统。首先使用面部关键点检测技术及面部编码系统筛选出关键子区域;然后对其进行特征提取。提出一种改进的局部梯度编码算子(LGC)、局部均值梯度编码算子(LMGC-HD);改进的算子具有更低的维度,能够充分地描述局部形变;且受随机噪声及边缘变化影响小。最后使用支持向量机(SVM)进行分类识别。采用CK+数据集进行实验,结果证明该系统能够有效地提高人脸表情的识别率。  相似文献   

14.
为有效提取人脸表情图像特征并降低特征向量维数,该文提出一种基于监督核局部线性嵌入(Supervised Kernel Locally Linear Embedding,SKLLE)和支持向量机(Support Vector Machine,SVM)相结合的降维和分类方法.利用人脸表情图像数据本身的非线性流形结构信息和标签信息实现维数约简,提取低维嵌入特征用于人脸表情识别,采用支持向量机代替传统的K近邻分类器.基于JAFFE人脸表情图像库和Cohn-Kanade人脸表情数据库的实验结果表明,该方法可以很好地实现维数约简,达到较高的识别率,有效地提高了人脸表情识别的性能.  相似文献   

15.
针对传统局部二元模式(LBP)算子存在直方图维数过高而导致识别速度降低和二值数据对噪声很敏感的问题,在分析传统LBP算子的原理基础上,对人脸表情特征的数据量增加、人脸表情特征向量和特征识别过程的优化进行如下改进:将人脸表情图像经过小波包的分解和重构,得到4幅不同频段的图像,从而有效地增加原表情图像的数据量;采用修正的LBP算法对人脸表情图像进行特征提取,并通过稀疏表示模型优化其特征向量,有效地降低传统LBP直方图的维数,提高人脸表情识别率,二次修正的LBP算法鲁棒性好;构建基于神经网络的多分类器模型,融合多特征多分类器的输出,有效地提高表情特征分类的准确性和稳定性。研究结果表明:与传统LBP算法对比,本算法用于人脸表情的识别时,其识别率得到较大幅度提高,算法鲁棒性好。  相似文献   

16.
一种基于局部特征融合的表情识别方法   总被引:1,自引:1,他引:1  
表情识别是人工智能和模式识别的研究热点,而特征融合方法则是表情识别中重要的技术方法之一.基于嘴部的Gabor小波特征和几何特征对表情识别有重要作用,提出一种仅用嘴部不同特征进行特征融合的表情识别方法.该方法将嘴部的Gabor小波特征和几何特征进行特征融合后再使用最近邻分类器分类.根据不同样本库、不同识别方法的对比实验结...  相似文献   

17.
面向人脸表情分析的表情空间模型   总被引:1,自引:0,他引:1  
首先对人脸表情的特点进行分析,给出了表情空间的定性描述.在此基础上,提出了一种兼有离散情感空间模型和连续情感空间模型特点的新的表情空间模型.为了验证该模型的合理性,利用Gabor小波特征和主分量分析方法结合混合高斯模型在人脸表情数据库JAFFE上进行了实验.对不同表情的分布规律进行了实验分析,实现了对表情空间的定性/定量描述.实验结果表明,提出的人脸表情空间模型能够对日常人脸表情进行恰当的表达.  相似文献   

18.
语种识别系统通常采用支持向量机(support vectormachine,SVM)一对多分类加Gauss后端分类器的方法进行分类。传统的SVM一对一分类在进行线性鉴别性分析(linear discriminant analysis,LDA)时特征值矩阵往往为奇异的,识别性能很低。该文提出一种改进的一对一分类方法,对SVM一对一分类得分重新建模,识别性能明显提高。在美国国家标准技术署(National Institute of Standardsand Technology,NIST)2011年语种识别评测(languagerecognition evaluation,LRE)30s数据集上的实验结果表明:在采用SVM的全变化量因子分析(total variability,iVector)和支持向量机-Gaussn超向量(support vectormachine-Gaussian super vector,SVM-GSV)语种识别系统上,该方法比SVM一对多分类方法性能更好,并且两种方法线性融合可明显提升识别性能,在iVector系统上各指标相对提升7.7%~15.9%,在SVM-GSV系统上各指标相对提升11.2%~33.9%。  相似文献   

19.
主要研究自动人脸表情识别(FER),首先使用Gabor算法提取人脸图像的特征,再针对Gabor特征维数高、冗余大及利用传统的AdaBoost算法进行特征选择时特征间仍存在较大冗余的特点,引入了基于互信息的AdaBoost算法(MutualBoost)进行特征选择,降低特征维数和减少特征间的冗余信息量。然后再以SVM分类器进行分类。本算法在JAFFE表情库上进行测试,结果验证了算法的有效性。  相似文献   

20.
视频流中检测到的关键帧图像包含了足够的表情信息,为了将这些表情信息进行分类和识别,文章提出了一种新的弹性模板匹配算法,它首先针对经Gabor小波变换后的表情模板,运用模板图像中表情关键点的检测算法,根据表情关键点的特征信息,构造表情弹性图,通过改变表情模板弹性图中关键点的位置,将表情模板与被测表情弹性图进行非刚性匹配,进而得到两者之间的相似程度,最后通过改进的K-近邻分类策略,实现被测图像表情的有效分类与识别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号