首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用Banach不动点定理和Schauder’s不动点定理,研究非线性分数阶微分方程初值问题解的存在性,其中分数是小于1的正数,初始点是零点,低一阶分数导数在初始点的值是非零常数。鉴于该初值问题等价的积分方程含有奇异项的在零点无界,通过选择恰当的完备空间,在非线性项满足合适的条件下,利用上述两个不动点定理,分别得到该初值问题唯一解和至少一个非平凡解的存在性。  相似文献   

2.
结合一些新的非紧性测度估计技巧,在f满足一般的增长条件和非紧性测度条件下,利用凝聚映射的不动点定理讨论Banach空间E中变阶数微分方程初值问题{Dq(t)0+u(t)=f(t,u(t)),0<t≤T,t2-q(t)u(t)|t=0=t2-q(t)u'(t)|t=0=0解的存在性,其中,1<q(t)≤2,0<T<+∞...  相似文献   

3.
为考察一类α∈(3,4]阶微分方程边值问题{Dα0+u(t)+f(t,u(t),u′(t))=0 u(0)=0,u′(0)=0 u″(1)=0,u(1)=g(u(1)) 解的存在性问题,运用Schauder不动点定理,得到了该问题一个解的存在性结果.  相似文献   

4.
考虑相对于另一个函数的Caputo型分数阶导数,利用Krasnoelkii定理和Banach不动点定理得到初值问题解的存在性和唯一性的结果.  相似文献   

5.
本文考虑如下一类含两项分数阶导数的半线性分数阶微分方程解的存在性问题: (_^c)D_t^α u(t)+ (_^c)D_t^β u(t)=f(t,u(t) ),0β>0, (_^c)D_t^β u(t)为Caputo分数阶导数. 我们利用Schauder不动点定理证明了在适当条件下解的存在性,所得结果改进了已有结论。  相似文献   

6.
分数阶微分方程解的存在性   总被引:4,自引:0,他引:4  
假设右端函数满足Perron条件,应用Schauder不动点定理证明了一个分数阶微分方程解的存在性结果,改进了Lipschitz条件.  相似文献   

7.
文章研究分数阶q-微分方程初值问题吸引解的存在性.在非线性项满足合适的条件下,文章巧妙地构造出无限区间上连续函数空间的一个有界凸闭子集.利用Schauder不动点定理,得到该初值问题至少存在一个吸引解,并给出相关的例子.  相似文献   

8.
讨论了Banach空间中的分数阶微分方程解的性质,利用Schauder不动点定理及Gronwall不等式证明了初值问题解的存在唯一性.当右端函数f(t,u)关于u线性增长时,得到了解的整体存在性.进一步讨论了分数阶方程的解对初值和阶数的连续相依性.  相似文献   

9.
将一类分数阶微分方程初值问题转化为等价的Volterra积分方程,通过构造一个特殊的Banach空间,应用Schauder不动点定理证明了其解的存在性.  相似文献   

10.
利用上下解方法与Schauder不动点定理,研究了一类非线性分数阶边值问题解的存在性:{D_(0+)~αu(t)=f(t,u(t)),t∈[0,1],u(0)=u(1)=u′(0)=u′(1)=0,其中α∈(3,4],是一实数,D_(0+)~α是Riemann-Liouville分数阶导数,推广和改进了已有的结果.  相似文献   

11.
研究了一类Katugampola分数阶微分方程解的吸引性,利用Schauder不动点定理及非紧性测度的方法,得到了Katugampola分数阶微分方程的解,建立了解全局吸引的充分判据,得到了解的吸引性结果。所得结果充分揭示了Katugampola分数阶微分方程解的特性。  相似文献   

12.
利用修正的紧性判别准则和Schauder不动点定理, 研究Banach空间中一类具有无穷多个脉冲点的分数阶微分方程的初值问题, 得到了该类方程解的存在性.  相似文献   

13.
利用Schauder不动点定理,在比较广泛的条件下,讨论了Banach空间四阶积分微分方程初值问题整体解的存在性。  相似文献   

14.
分数阶微分方程初值问题解的存在性与唯一性   总被引:4,自引:1,他引:4  
运用Banach压缩映射原理的推论和广义Lipschitz条件,研究一类阶数在1~2范围内的分数阶微分方程初值问题解的存在性与唯一性,给出该问题存在唯一解的充分条件,推广已有某些结果。  相似文献   

15.
讨论了非线性分数阶微分方程耦合系统的三点边值问题,利用Green函数的性质,将其转化为等价的积分方程耦合系统,应用Schauder不动点定理得到解的存在的充分条件.  相似文献   

16.
分数阶微分方程积分边值问题正解的存在性   总被引:1,自引:0,他引:1  
研究了一类带有积分边值条件的分数阶微分方程边值问题,运用Schauder不动点定理,得到了边值问题正解存在的充分条件,改进了已有的结果,同时给出了一些实例,说明所得结果的有效性.  相似文献   

17.
用Banach压缩映像原理和Schauder不动点定理, 讨论带分数阶边值条件的一类非线性项包含低阶分数阶导数的分数阶微分方程, 证明其解的存在唯一性, 并给出应用实例.  相似文献   

18.
主要对一类带有积分边值的分数阶微分方程的两点边值问题进行分析和研究.在特定的因素下,利用Schauder不动点定理,最终得出分数阶微分方程边值问题解的存在性.  相似文献   

19.
非瞬时脉冲所描述的突变会持续停留在一个有限的时间间隔内,这种现象在临床医学、生物工程、化学和物理等领域都普遍存在。为了能够更深刻、更精确地反映事物的变化规律,研究了一类具有非瞬时脉冲的分数阶微分方程边值问题解的存在性与唯一性。首先,通过建立与边值问题等价的积分方程,定义了算子,并证明了其全连续性;然后,运用Schauder不动点定理得到了边值问题解存在的充分条件;最后利用压缩映射原理得到解的唯一性定理。  相似文献   

20.
利用Schauder不动点定理给出下面非线性分数阶微分方程边值问题D0α+u(t)=f(t,u(t)),0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号