首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对特征提取过程中缺乏对人群区域的针对性,不同大小人头目标不能同时检测以及特征融合时多尺度特征信息丢失问题,提出多尺度注意力模块,增强特征对高密度人群区域的关注。采用多尺度空洞卷积,结合提出的多通道特征融合模块,提取更完善的多尺度特征,提高对不同尺寸人头计数能力;利用密度图回归模块,融合多尺度特征,减少了多尺度信息的损耗。实验结果表明,本算法的计数结果更精确稳定。  相似文献   

2.
在虚假信息识别任务中,面对图文结合的虚假内容,基于单模态的模型难以进行准确识别.社交媒体中的虚假信息为吸引关注和迅速传播的目的,会使用夸张的词汇煽动读者的情绪.如何将情感特征引入多模态虚假信息检测模型进行多特征融合,并准确地识别虚假信息是一个挑战.为此,本文提出了基于注意力机制多特征融合的虚假信息检测方法(att-MFNN).该模型中先将文本特征和情感特征基于注意力机制融合,再与视觉特征组成多模态特征送入虚假信息识别器和事件分类器中.通过引入事件分类器学习不同事件中的共同特征,提高新事件的识别性能.att-MFNN在微博和推特(Twitter)数据集的准确率达到了89.22%和87.51%,并且F1、准确率、召回率指标均优于现有的模型.  相似文献   

3.
在连续手势自动识别中,如果可以借助自然语言对手势进行描述,这将更接近于人们对手势认知的方法,这在一定程度上将有助于提高识别的准确性。通过使用模糊集与条件随机场相结合的方法实现了对连续手势的标注、分割。FCRF首先采用模糊集对手势进行描述,实现了自然语言对手势的描述,然后通过对条件随机场中状态和状态转移参数的修改实现了采用模糊特征的连续手势序列标注。实验结果显示,与现有的分割模型相比较,FCRF模型对手势序列标注具有较高的正确率,通过ROC特性曲线的分析,FCRF有较好的分类性能。  相似文献   

4.
刘星宇  宁慧  张汝波 《应用科技》2021,(1):25-30,35
针对如何使用适当的模型或结构使得词性标注结果准确率提升的问题,对隐马尔可夫模型和条件随机场模型进行了深入研究和实验,使用条件随机场的不同特征方程进行了多组实验,并对比了每组实验的准确率.实验结果表明,条件随机场对于解决英文词性标注问题有着更大的优势;将共性的特征与相对具体的后缀特征结合使用所达到的词性标注准确率最高.  相似文献   

5.
为了建立基于视频行为识别的长时程图像序列的时空信息模型,文章提出了一种嵌入注意力的时空特征融合网络(attention-embedded spatial-temporal feature fusion network,ASTFFN)的深度神经网络模型.AST FFN将一个包含动作的长时程图像序列分割成多个重叠的片段,并...  相似文献   

6.
基于MapReduce的中文词性标注CRF模型并行化训练研究   总被引:1,自引:0,他引:1  
针对条件随机场模型面对大规模数据传统训练算法单机处理性能不高的问题, 提出一种基于MapReduce框架的条件随机场模型训练并行化方法, 设计了条件随机场模型特征提取及参数估计的并行算法, 实现了迭代缩放算法的并行。实验表明, 所提出的并行化方法在保证训练结果正确性的同时, 大大减少了训练时间, 效率得到较大提升。  相似文献   

7.
在任务型人机对话系统中,槽抽取任务是至关重要的一个环节.为了提高槽抽取模型的识别准确率,该文提出了一种利用自注意力机制融合文本的多特征维度特征的方法.该方法在常规的双向长短期记忆模型(Bi-directional long short-term memory,Bi-LSTM)和条件随机场(Conditional ran...  相似文献   

8.
提出一种基于注意力机制的多层次特征融合的图像去雾算法.该算法通过残差密集网络和自校准卷积网络来提取不同尺度的特征,再利用双重注意单元和像素注意力将特征融合重建.同时采用一种由均方误差损失、边缘损失和鲁棒性损失函数相结合的损失函数,可以更好地保留细节特征.实验表明,该算法与其他去雾算法相比在峰值信噪比和结构相似度指标上得到一定的提高,去雾图像在主观视觉上取得了较好表现.  相似文献   

9.
三维点云由于受到雾、雨和雪等自然天气条件的影响较小而受到了广泛的关注,在交通、能源和医疗等多个领域得到了广泛的应用,其中点云分类旨在划分三维点云数据的类别,为不同领域决策者提供信息,实现解决方案的制订,对自动驾驶、故障诊断和医学影像分析等具有重要意义。点云分类的应用前景广阔,但目前仍面临着诸多挑战。由于点云的无序性、稀疏性和有限性等特点,传统的图像处理和计算机视觉方法难以直接应用于点云数据分析,直接利用卷积神经网络不能有效提取点云特征,部分模型的特征提取不够充分,局部和全局的信息未能有效的利用,可能丢失重要特征信息。针对上述问题,提出一种实现点云的局部和全局特征相结合的多特征融合模块,并结合偏移注意力机制嵌入多特征融合模块实现较深层次点云特征的提取,同时引入残差结构充分利用浅层提取的特征,防止网络过深导致浅层特征丢失。在ModelNet40和ScanObjectNN分类数据集上进行训练和测试,并对实验进行了消融研究和部分数据可视化。实验结果发现该模型在ModelNet40上的分类总体准确率为93.6%,与PointNet、LDGCNN和PCT等模型相比,分类总体准确率分别提高了4.4、...  相似文献   

10.
利用多资源转化方法进行词性标注研究, 旨在将源端资源的标注进行转化, 以符合目标端标注规范, 进而将转化后的资源与目标资源合并, 增大训练数据规模。做了两方面创新: 在转化过程中, 额外利用指导特征的置信度信息; 在转化后的资源中, 用模糊标注表示方法减少错误标注。实验表明, 利用置信度信息能有效帮助转化, 而模糊标注表示方法的影响不大。  相似文献   

11.
针对行人重识别中因遮挡、姿态变化使模型特征无法充分表达行人信息的问题,提出了基于注意力机制与多尺度特征融合的行人重识别方法.首先使用改进的骨干网络R-ResNet50提取图像特征;其次,抽取网络不同尺度的特征层嵌入注意力机制DANet,使模型更关注于重点信息;最后,对提取出的关键特征进行多尺度特征融合,实现特征间的优势...  相似文献   

12.
针对目前负荷分解模型的深层负荷特征提取不充分,分解精度低以及训练成本高等问题,提出了一种多尺度特征融合模型。模型由负荷分解子网络及负荷识别子网络两部分构成,两个子网络均利用一维卷积和批量归一化等组成的卷积块进行负荷特征初提取,然后采用金字塔池化模块从多个维度精确提取深层负荷特征信息,并与特征初提取部分进行融合。金字塔池化模块使网络参数大大减少且降低了训练成本。同时与以往模型中的注意力机制不同的是,网络引入多头自注意力机制,每个注意力关注负荷特征的不同部分,从多个角度实现对重要负荷特征的筛选,进一步提高分解性能。最后,在UK-DALE和REDD数据集上进行实验,结果表明所提模型与四个基准模型相比,无论是负荷分解性能还是电器运行状态识别能力都有明显提升。  相似文献   

13.
针对在基于卷积神经网络的图像处理领域内,大部分特征融合只是通过A dd或者Concat操作进行特征叠加或特征拼接而不能很好地将有效特征进行融合的问题,对Add和Concat特征融合引入通道域的注意力机制,设计了4种可学习的特征融合方式:A-Cat、B-Cat、A-Add和B-Add.为了验证方法的有效性,选择YOLOv...  相似文献   

14.
传统的序列推荐通常忽略用户和项目特征信息的重要性,且无法有效对动态的兴趣偏好进行建模.因此,提出融合动态兴趣与特征信息的序列推荐算法.该算法通过对目标项目进行动态兴趣建模,克服兴趣转移带来的影响;同时融合用户和项目特征信息模拟真实的用户行为以提高推荐的性能.首先,针对动态兴趣建模,采用辅助函数应用下一个行为监督上一个隐藏兴趣状态的学习,并采用带注意力机制的门控循环单元为不同的兴趣状态对目标影响程度赋予不同的权重;然后,针对用户和项目特征信息特征融合,采用平凡注意力机制为影响目标项目的特征赋予不同的权重,并通过多头注意力机制进行深层次的特征提取;最后,融合用户动态兴趣表示和用户项目特征表示输入到多层感知机.在Yelp和MovieLens-1M数据集上进行仿真实验,结果表明提出模型的性能比一些基线模型有较好的提升.  相似文献   

15.
随着深度学习的快速发展,利用目标检测算法对航拍绝缘子图像进行缺陷检测成为绝缘子巡检的主要方式.针对传统目标检测算法对小目标的检测精度较低、特征图的表征能力较弱和提取的关键信息较少的问题,提出以YOLOv5l为基础网络的改进的基于注意力机制和多尺度特征融合的绝缘子缺陷检测方法 AMF-YOLOv5l(Attention Mechanism and Multi-Scale Feature Fusion Based on YOLOv5l).首先,通过增加一个小目标检测头,提高模型对小目标的检测性能;然后,构造DSPP(Dilated Spatial Pyramid Pooling)模块,充分融合多尺度特征,增强特征图的表征能力;最后,引入CA(Coordinate Attention)注意力机制,使网络更加专注于关键信息.在航拍绝缘子数据集APID(Aerial Photographic Insulator Dataset)以及两个公共数据集PASCAL VOC和MS COCO上分别验证该方法的可行性.实验结果表明,在APID数据集中该方法的AP(Average Precision)比YOL...  相似文献   

16.
近年来基于字的词位标注的方法极大地提高了汉语分词的性能,该方法将汉语分词转化为字的词位标注问题,借助于优秀的序列数据标注模型,基于字的词位标注汉语分词方法逐渐成为汉语分词的主要技术路线.针对一些领域文本中含有较多的英文词汇、缩写、数字等非汉字子串,提出了一种基于字和子串联合标注的汉语分词方法,该方法将子串看作和汉字等同的一个整体,采用四词位标注集,使用条件随机场模型深入研究了基于字和子串联合标注的汉语分词技术.在CIPS-SIGHAN2010汉语分词评测所提供的文学、计算机、医药、金融四个领域语料上进行了封闭测试,实验结果表明此方法比传统的字标注分词方法性能更好.  相似文献   

17.
序列推荐试图利用用户的连续行为、用户偏好、物品流行度以及用户和项目之间的交互动作进行建模,传统的马尔科夫链(MC)、递归神经网络(RNN)和基于自注意力的模型已被大量应用于序列推荐,但它们只是将交互历史假设成有序序列,忽略各个交互之间的时间间隔,也不考虑序列中项目之间交互的可能性存在大小关系以及用户对项目的兴趣度可能随着时间推移而发生变化。文中对基于时间间隔感知自注意力的序列推荐模型TiSASRec进行优化,提出了考虑到用户对项目的兴趣度会发生变化的改进模型TiSeqRec,该模型基于TiSASRec,进一步捕获用户整体偏好和局部偏好,并使用一致性感知门控网络将两种偏好智能结合,预测下一项的内容。通过大量的实验验证了TiSeqRec模型在稀疏、密集数据集和不同的评价指标上都优于已有的最新的序列推荐模型。  相似文献   

18.
在威胁情报包含的信息中,与网络攻击相关的战术、技术、程序(TTPs)是最能刻画组织行为的关键信息。但是,TTPs信息抽象层次高,并且通常存在于语法结构不规则的网络威胁情报文本中。这导致传统的人工分析方法以及基于特征工程的机器学习方法难以快速有效地从中分类出TTPs。使用单一的深度学习特征提取器则因无法提取文本语意中完整的邻域特征和序列特征,导致技战术分类精度低。针对上述问题,本文提出一种基于注意力机制和特征融合的深度学习模型:ACRCNN,用于网络威胁情报中的战术与技术的分类。该模型通过卷积与循环神经网络同时提取网络威胁情报文本中的邻域与序列信息,再由卷积层与池化层进行深层次的特征抽取与降维,完成特征融合。然后,通过注意力层完成特征加权,最终经由全连接层完成战术与技术的分类。实验结果表明,ACRCNN在战术、技术分类任务中表现优异,在F1指标上达到了91.91%、83.86%,对比现有模型,分别提高了2.46%和4.94%。  相似文献   

19.
为了能够在数量庞大的雷达技术资料中快速准确地找到科研人员感兴趣的雷达知识信息并进行推荐,提出了一种基于注意力模型的多模态特征融合雷达知识推荐方法,学习高层次的雷达知识的多模态融合特征表示,进而实现雷达知识推荐.该方法主要包括数据预处理、多模态特征提取、多模态特征融合和雷达知识推荐4个阶段.实验结果表明:与只利用单一模态特征以及简单串联多模态特征的方法相比,利用文中方法学习到的多模态融合特征进行雷达知识推荐,推荐结果的准确率、召回率和综合评价指标(F1值)均有显著提高,表明提出的基于注意力模型的多模态特征融合方法对于知识推荐任务更加有效,体现了算法的优越性.  相似文献   

20.
目前主流图像去雾算法输出的结果图像存在颜色失真、边缘模糊的问题.为改善上述问题,提出一种基于深度学习的图像去雾算法,所提算法由两个模块构成:注意力特征融合模块和雾霾模型参数估计模块.注意力特征融合模块用于充分提取雾霾图像的颜色、边缘特征;基于稠密连接空洞卷积自编码器的雾霾模型参数估计模块用于估计雾霾模型的参数,改善网络退化的问题.在浓雾图像、薄雾图像数据集上的实验表明,本文提出的算法有效地实现了图像去雾,与主流的图像去雾算法相比具有更高的结构相似性(SSIM),更低的均方误差(mean-square error,MSE)和边缘误差e○edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号