首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reznik D  Pintschovius L  Ito M  Iikubo S  Sato M  Goka H  Fujita M  Yamada K  Gu GD  Tranquada JM 《Nature》2006,440(7088):1170-1173
The attempt to understand copper oxide superconductors is complicated by the presence of multiple strong interactions in these systems. Many believe that antiferromagnetism is important for superconductivity, but there has been renewed interest in the possible role of electron-lattice coupling. The conventional superconductor MgB2 has a very strong electron-lattice coupling, involving a particular vibrational mode (phonon) that was predicted by standard theory and confirmed quantitatively by experiment. Here we present inelastic scattering measurements that show a similarly strong anomaly in the Cu-O bond-stretching phonon in the copper oxide superconductors La(2-x)Sr(x)CuO4 (with x = 0.07, 0.15). Conventional theory does not predict such behaviour. The anomaly is strongest in La(1.875)Ba(0.125)CuO4 and La(1.48)Nd(0.4)Sr(0.12)CuO4, compounds that exhibit spatially modulated charge and magnetic order, often called stripe order; it occurs at a wave vector corresponding to the charge order. These results suggest that this giant electron-phonon anomaly, which is absent in undoped and over-doped non-superconductors, is associated with charge inhomogeneity. It follows that electron-phonon coupling may be important to our understanding of superconductivity, although its contribution is likely to be indirect.  相似文献   

2.
Carbotte JP  Schachinger E  Basov DN 《Nature》1999,401(6751):354-356
In conventional superconductors, the most direct evidence of the mechanism responsible for superconductivity comes from tunnelling experiments, which provide a clear picture of the underlying electron-phonon interactions. As the coherence length in conventional superconductors is large, the tunnelling process probes several atomic layers into the bulk of the material; the observed structure in the current-voltage characteristics at the phonon energies gives, through inversion of the Eliashberg equations, the electron-phonon spectral density alpha2F(omega). The situation is different for the high-temperature copper oxide superconductors, where the coherence length (particularly for c-axis tunnelling) can be very short. Because of this, methods such as optical spectroscopy and neutron scattering provide a better route for investigating the underlying mechanism, as they probe bulk properties. Accurate reflection measurements at infrared wavelengths and precise polarized neutron-scattering data are now available for a variety of the copper oxides, and here we show that the conducting carriers (probed by infrared spectroscopy) are strongly coupled to a resonance structure in the spectrum of spin fluctuations (measured by neutron scattering). The coupling strength inferred from those results is sufficient to account for the high transition temperatures of the copper oxides, highlighting a prominent role for spin fluctuations in driving superconductivity in these materials.  相似文献   

3.
Cu元素、O元素在铜氧化物高Tc超导体中对超导电性的产生,超导转变温度的变化,掺杂元素的特征效应具有决定性作用。对Cu元素、O元素的性质特征认识,成键特点,以及在铜氧化物高Tc超导体中的同位素效应清楚的理解,对全面揭示高Tc铜氧化物超导体超导电性机理具有关键作用。通过分析Cu元素、O元素在铜氧化物超导体中的同位素效应,得出了高Tc铜氧化物超导电性的机理仍是电声机制,CuO2平面上的Cu元素,O元素的声子直接参于电声子配对,CuO2平面上的Cu、O元素的键态的声子模对电声配对具有决定性作用。  相似文献   

4.
Gweon GH  Sasagawa T  Zhou SY  Graf J  Takagi H  Lee DH  Lanzara A 《Nature》2004,430(6996):187-190
In conventional superconductors, the electron pairing that allows superconductivity is caused by exchange of virtual phonons, which are quanta of lattice vibration. For high-transition-temperature (high-T(c)) superconductors, it is far from clear that phonons are involved in the pairing at all. For example, the negligible change in T(c) of optimally doped Bi2Sr2CaCu2O8+delta (Bi2212; ref. 1) upon oxygen isotope substitution (16O --> 18O leads to T(c) decreasing from 92 to 91 K) has often been taken to mean that phonons play an insignificant role in this material. Here we provide a detailed comparison of the electron dynamics of Bi2212 samples containing different oxygen isotopes, using angle-resolved photoemission spectroscopy. Our data show definite and strong isotope effects. Surprisingly, the effects mainly appear in broad high-energy humps, commonly referred to as 'incoherent peaks'. As a function of temperature and electron momentum, the magnitude of the isotope effect closely correlates with the superconducting gap--that is, the pair binding energy. We suggest that these results can be explained in a dynamic spin-Peierls picture, where the singlet pairing of electrons and the electron-lattice coupling mutually enhance each other.  相似文献   

5.
Since the discovery of superconductivity, there has been a drive to understand the mechanisms by which it occurs. The BCS (Bardeen-Cooper-Schrieffer) model successfully treats the electrons in conventional superconductors as pairs coupled by phonons (vibrational modes of oscillation) moving through the material, but there is as yet no accepted model for high-transition-temperature, organic or 'heavy fermion' superconductivity. Experiments that reveal unusual properties of those superconductors could therefore point the way to a deeper understanding of the underlying physics. In particular, the response of a material to a magnetic field can be revealing, because this usually reduces or quenches superconductivity. Here we report measurements of the heat capacity and magnetization that show that, for particular orientations of an external magnetic field, superconductivity in the heavy-fermion material CeCoIn(5) is enhanced through the magnetic moments (spins) of individual electrons. This enhancement occurs by fundamentally altering how the superconducting state forms, resulting in regions of superconductivity alternating with walls of spin-polarized unpaired electrons; this configuration lowers the free energy and allows superconductivity to remain stable. The large magnetic susceptibility of this material leads to an unusually strong coupling of the field to the electron spins, which dominates over the coupling to the electron orbits.  相似文献   

6.
采用LLP中间耦合方法,研究了电子—声子相互作用对压电表面的影响.结果表明,当电子接近晶体表面处时,表面声学声子之间的相互作用对表面态的影响很大.尤其是电子—压电声子耦合较强的化合物,压电声子对电子在表面的束缚比光学声子的束缚强很多.因此,研究压电材料的电子表面态时,应主要考虑压电声学声子.  相似文献   

7.
研究多原子晶体中极化子光学声子平均数的性质.采用线性组合算符和幺正变换方法,分别导出多原子晶体中强、弱耦合极化子的光学声子平均数.结果表明:对于弱耦合得到光学声子平均数是由不同支声子与电子耦合产生的声子平均数之和的通常结果,对于强耦合存在一个由于不同支声子之间交叉项贡献的附加声子平均数。  相似文献   

8.
基于Huybrechts线性组合算符法,采用Lee—Low-Pines幺正变换和变分技术研究了磁场中量子棒内抛物限制势下电子一体纵光学声子强耦合磁极化子基态的回旋共振特性,推导出磁极化子回旋共振频率和光学声子平均数与磁场的回旋频率、电子一声子耦合强度、量子棒的纵横比和受限强度的变化规律。数值结果表明:磁极化子的光学声子...  相似文献   

9.
提出了纯金属电阻率的两个简化模型:一个统计模型,一个电子一声子耦合模型。由统计模型可得出:纯金属电阻率与声子浓度及声子平均动量的平方成正比。由电子-声子耦合模型得出:电子的散射几率不仅正比于声子数,而且正比于电子-声子的耦合强度。由这两个模型皆能得出纯金属电阻率在高温时与温度T成正比,低温时与T5成正比的结果。由电阻率—温度曲线的比较表明,两模型相当吻合。  相似文献   

10.
在介电连续模型下,运用传递矩阵的方法研究多层球形异质结中的界面光学声子,得出了多层球形异质结中的界面光学声子的本征模解、色散关系和电子与界面光学声子相互作用的哈密顿.对5层球形异质结CdS/HgS/CdS/HgS/H2O中的界面声子的色散关系和电声相互作用的耦合强度进行了数值计算,结果发现在5层球形异质结中,存在着7支光学界面声子,但仅有一支界面声子对电声相互作用的耦合强度具有重要的影响.  相似文献   

11.
利用基于密度泛函理论的赝势平面波方法计算了高压下CsI的电子能带结构、 电子态密度、 声子谱、 声子态密度以及电子和声子的相互作用, 探讨了CsI在高压下产生超导电性的物理机制. 研究表明, CsI层内的光学振动模式与电子之间的强耦合作用是CsI产生超导电性的主要原因.  相似文献   

12.
仅考虑高频分支对极化子的贡献,研究了单模型三元混晶界面极化子的性质.既考虑了电子与体声子的耦合,又考虑了电子与两支界面光声子的耦合.我们计算了ZnSexTe1-x(GaAs)和GaAsxSb1-x(InSb)两种材料里电子与声子相互作用.电子在强电场的作用下,界面光声子与电子的耦合加强.体光声子与电子的耦合在x的某一点有一个极小值,两支界面光声子与电子的耦合随x的变化很小  相似文献   

13.
Wilson SD  Dai P  Li S  Chi S  Kang HJ  Lynn JW 《Nature》2006,442(7098):59-62
In conventional superconductors, the interaction that pairs the electrons to form the superconducting state is mediated by lattice vibrations (phonons). In high-transition-temperature (high-T(c)) copper oxides, it is generally believed that magnetic excitations might play a fundamental role in the superconducting mechanism because superconductivity occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds. Indeed, a sharp magnetic excitation termed 'resonance' has been observed by neutron scattering in a number of hole-doped materials. The resonance is intimately related to superconductivity, and its interaction with charged quasi-particles observed by photoemission, optical conductivity, and tunnelling suggests that it might play a part similar to that of phonons in conventional superconductors. The relevance of the resonance to high-T(c) superconductivity, however, has been in doubt because so far it has been found only in hole-doped materials. Here we report the discovery of the resonance in electron-doped superconducting Pr0.88LaCe0.12CuO4-delta (T(c) = 24 K). We find that the resonance energy (E(r)) is proportional to T(c) via E(r) approximately 5.8k(B)T(c) for all high-T(c) superconductors irrespective of electron- or hole-doping. Our results demonstrate that the resonance is a fundamental property of the superconducting copper oxides and therefore must be essential in the mechanism of superconductivity.  相似文献   

14.
Giustino F  Cohen ML  Louie SG 《Nature》2008,452(7190):975-978
Despite over two decades of intense research efforts, the origin of high-temperature superconductivity in the copper oxides remains elusive. Angle-resolved photoemission spectroscopy experiments have revealed a kink in the dispersion relations (energy versus wavevector) of electronic states in the copper oxides at binding energies of 50-80 meV, raising the hope that this anomaly could be a key to understanding high-temperature superconductivity. The kink is often interpreted in terms of interactions between the electrons and a bosonic field. Although there is no consensus on the nature of the bosons (or even whether a boson model is appropriate), both phonons and spin fluctuations have been proposed as possible candidates. Here we report first-principles calculations of the role of phonons and the electron-phonon interaction in the photoemission spectra of La(2 - x)Sr(x)CuO4. Our calculations within the standard formalism demonstrate that the phonon-induced renormalization of the electron energies and the Fermi velocity is almost one order of magnitude smaller than the effect observed in photoemission experiments. Therefore, our result rules out electron-phonon interaction in bulk La(2 - x)Sr(x)CuO4 as the exclusive origin of the measured kink. Our conclusions are consistent with those reached independently in a recent study of the related compound YBa2Cu3O7.  相似文献   

15.
采用线性组合算符和幺正变换的方法研究了在抛物限制势下量子棒中电子一体纵光学(LO)声子弱耦合极化子中电子周围的平均声子数.讨论了在弱耦合情况下,电子周围的平均声子数与电子-声子耦合常数及纵横比的关系.  相似文献   

16.
Superconductivity in single crystals of the fullerene C70.   总被引:2,自引:0,他引:2  
The observation of superconductivity in doped C60 has attracted much attention, as these materials represent an entirely new class of superconductors. A maximum transition temperature (Tc) of 40 K has been reported for electron-doped C60 crystals, while a Tc of 52 K has been seen in hole-doped crystals; only the copper oxide superconductors have higher transition temperatures. The results for C60 raise the intriguing questions of whether conventional electron-phonon coupling alone can produce such high transition temperatures, and whether even higher transition temperatures might be observed in other fullerenes. There have, however, been no confirmed reports of superconductivity in other fullerenes, though it has recently been observed in carbon nanotubes. Here we report the observation of superconductivity in single crystals of electric-field-doped C70. The maximum transition temperature of about 7 K is achieved when the sample is doped to approximately four electrons per C70 molecule, which corresponds to a half-filled conduction band. We anticipate superconductivity in smaller fullerenes at temperatures even higher than in C60 if the right charge density can be induced.  相似文献   

17.
计及电子-声子耦合计算了局域在极性-极性半导体异质结上的激子的结合能,得到了两支界面光学声子模对结合能的贡献.结果表明:对于重空穴激子结合能,界面声子起着重要作用,且两支界面声子模的贡献是可比拟的.对于GaAs/AlxGa1-xAs体系,讨论了构成异质结的混晶组份对结合能的影响.  相似文献   

18.
在量子阱材料中,同时考虑体声子和界面声子模对受主杂质态能级的影响,给出了受主杂质态基态结合能和不同支声子模对能量的贡献随阱宽变化的数值结果。结果表明,阱宽较大时,体声子模的作用比界面声子模的作用大,阱宽较小时,界面声子模的作用比体声子模的作用大,而整个电子-声子相互作用随阱宽的增大而减小。  相似文献   

19.
Formation of electron pairs is essential to superconductivity. For conventional superconductors, tunnelling spectroscopy has established that pairing is mediated by bosonic modes (phonons); a peak in the second derivative of tunnel current d2I/dV2 corresponds to each phonon mode. For high-transition-temperature (high-T(c)) superconductivity, however, no boson mediating electron pairing has been identified. One explanation could be that electron pair formation and related electron-boson interactions are heterogeneous at the atomic scale and therefore challenging to characterize. However, with the latest advances in d2I/dV2 spectroscopy using scanning tunnelling microscopy, it has become possible to study bosonic modes directly at the atomic scale. Here we report d2I/dV2 imaging studies of the high-T(c) superconductor Bi2Sr2CaCu2O8+delta. We find intense disorder of electron-boson interaction energies at the nanometre scale, along with the expected modulations in d2I/dV2 (refs 9, 10). Changing the density of holes has minimal effects on both the average mode energies and the modulations, indicating that the bosonic modes are unrelated to electronic or magnetic structure. Instead, the modes appear to be local lattice vibrations, as substitution of 18O for 16O throughout the material reduces the average mode energy by approximately 6 per cent--the expected effect of this isotope substitution on lattice vibration frequencies. Significantly, the mode energies are always spatially anticorrelated with the superconducting pairing-gap energies, suggesting an interplay between these lattice vibration modes and the superconductivity.  相似文献   

20.
外磁场中的强耦合极化子性质   总被引:2,自引:0,他引:2  
运用变分法系统地研究了外磁场下极化子的电声子耦合作用,其中具体考虑了电子和表面光学声子(SO)的强耦合作用以及与体纵光学声子(LO)的弱耦合作用,应用Huybertch提出的变分方法和二次么正变换,给出了电子-声相互作用能,数值结果表明:随着电子和晶体表面距离的增加,电子-表面光学声子相互作用能的数值减小,而电子-体纵光学声子相互作用能的数值增大;磁场增强,电子与两种声子之间的相互作用均增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号