首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Most eukaryotic mRNAs receive a poly (A) tail at their 3′-ends through a process involving the cleavage of pre-mRNA and the concomitant polymerization of adenosine residues to the cleaved RNA end[1,2]. As un- translated regions (UTRs) may contain importa…  相似文献   

4.
5.
Processing of the 3' end of sea urchin H3 histone pre-mRNA requires conserved sequence elements and the presence of U7 snRNA. A mutation in the conserved CAAGAAGA sequence of the H3 pre-mRNA that renders 3' processing of this precursor defective is shown to be suppressed by a compensatory change in the U7 snRNA, restoring the base-pairing potential of the two RNAs. RNA-RNA contacts between these two molecules appear to be an essential feature of the 3' processing reaction.  相似文献   

6.
Alpha-thalassaemia caused by a polyadenylation signal mutation   总被引:3,自引:0,他引:3  
  相似文献   

7.
C Montell  E F Fisher  M H Caruthers  A J Berk 《Nature》1983,305(5935):600-605
A single U leads to G transversion in the 3' consensus sequence AAUAAA of the adenovirus early region 1A gene was constructed and the effect of this mutation on processing of the 3' end of the nuclear early region 1A RNAs was analysed. The results demonstrate that the intact AAUAAA is not required for RNA polyadenylation but is required for the cleavage step preceding polyadenylation to occur efficiently.  相似文献   

8.
9.
10.
D G Macejak  P Sarnow 《Nature》1991,353(6339):90-94
A Robosome-scanning model has been proposed to explain the initiation of eukaryotic messenger RNAs in which binding of the 43S ternary ribosomal subunit near or at the 5' end of the mRNA is facilitated by an interaction between the methylated cap-structure at the end of the mRNA and the cap-binding protein complex eIF-4F. But picornaviral mRNAs do not have a 5' terminal cap structure and are translated by internal ribosome binding. A cellular mRNA, encoding the immunoglobulin heavy-chain binding protein, can be translated in poliovirus-infected cells at a time when cap-dependent translation of host cell mRNAs is inhibited. We report here that the 5' leader of the binding protein mRNA can directly confer internal ribosome binding to an mRNA in mammalian cells, indicating that translation initiation by an internal ribosome-binding mechanism is used by eukaryotic mRNAs.  相似文献   

11.
12.
13.
Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.  相似文献   

14.
15.
A discontinuous hammerhead ribozyme embedded in a mammalian messenger RNA   总被引:1,自引:0,他引:1  
Martick M  Horan LH  Noller HF  Scott WG 《Nature》2008,454(7206):899-902
  相似文献   

16.
17.
Quality control of mRNA 3'-end processing is linked to the nuclear exosome   总被引:2,自引:0,他引:2  
Hilleren P  McCarthy T  Rosbash M  Parker R  Jensen TH 《Nature》2001,413(6855):538-542
  相似文献   

18.
19.
A H Igel  M Ares 《Nature》1988,334(6181):450-453
U2 small nuclear RNA is a highly conserved component of the eukaryotic cell nucleus involved in splicing messenger RNA precursors. In the yeast Saccharomyces cerevisiae, U2 RNA interacts with the intron by RNA-RNA pairing between the conserved branchpoint sequence UACUAAC and conserved nucleotides near the 5' end of U2 (ref. 4). Metazoan U2 RNA is less than 200 nucleotides in length, but yeast U2 RNA is 1,175 nucleotides long. The 5' 110 nucleotides of yeast U2 are homologous to the 5' 100 nucleotides of metazoan U2 (ref. 6), and the very 3' end of yeast U2 bears a weak structural resemblance to features near the 3' end of metazoan U2. Internal sequences of yeast U2 share primary sequence homology with metazoan U4, U5 and U6 small nuclear RNA (ref. 6), and have regions of complementarity with yeast U1 (ref. 7). We have investigated the importance of the internal U2 sequences by their deletion. Yeast cells carrying a U2 allele lacking 958 nucleotides of internal U2 sequence produce a U2 small nuclear RNA similar in size to that found in other organisms. Cells carrying only the U2 deletion grow normally, have normal levels of spliced mRNA and do not accumulate unspliced precursor mRNA. We conclude that the internal sequences of yeast U2 carry no essential function. The extra RNA may have a non-essential function in efficient ribonucleoprotein assembly or RNA stability. Variation in amount of RNA in homologous structural RNAs has precedence in ribosomal RNA and RNaseP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号