首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
从活性污泥中分离出一株好氧耐盐反硝化菌YFX-6,耐盐度10%.经生理生化鉴定和16S rDNA测序,鉴定出菌株YFX-6属于Halomonas sp.考察了不同C/N质量浓度比、溶解氧、接种量、处理时间对菌株YFX-6在粮果实际废水中反硝化脱氮效果的研究.随着C/N质量浓度比的不断增加,菌株YFX-6的反硝化脱氮效果先逐渐增强后又减弱;随着溶解氧、处理时间和接种量的不断增加,菌株YFX-6的脱氮效果逐渐增强后趋于稳定.初始硝态氮质量浓度约为108.5 mg/L,氯化钠质量浓度为10 mg/L,C/N质量浓度比为8,溶解氧为3.5 mg/L,接种量所占体积分数为20%,处理16 h时,硝态氮去除率为98.69%.因此,筛选出的一株好养耐盐的异氧反硝化菌可以在上述条件下表现出良好的脱氮性能.  相似文献   

2.
1株异养硝化-好氧反硝化菌的分离鉴定及脱氮活性   总被引:3,自引:0,他引:3  
从养殖池塘底泥中分离出1株异养硝化-好氧反硝化菌,对其进行生理生化鉴定、最佳脱氮条件确定及与活性污泥共同作用下的脱氮性能研究.经过菌株生理生化特性鉴定及查伯杰氏手册确定该菌株为非发酵、无芽孢的革兰阴性菌,初步鉴定为不动杆菌,且同时具有硝化和反硝化的特性.利用正交试验研究其脱氮性能的影响因素和最佳条件,结果表明:在以琥珀酸钠为唯一碳源,C/N为8,接种量为10 mL/L,pH为8,转速为75 r/min的培养条件下,该菌株对TN的降解效果最佳,降解率为98%;在以琥珀酸钠为唯一碳源,C/N为8,接种量为10 mL/L,pH为6.5,转速为120 r/min的培养条件下,该菌株对COD的降解效果最佳,降解率为99%.在对实际污水的脱氮处理中,该菌株脱氮性能很强并可加强活性污泥的脱氮性能,具有一定的实用性.  相似文献   

3.
从螺旋升流式SUFR-UCT系统好氧反应器的活性污泥中分离得到一株好氧反硝化菌Y4,经16S rDNA系列相似性比较和系统发育分析初步鉴定属于Gordonia.sp(戈登氏菌属)。对菌株Y4反硝化能力进行试验研究,结果表明菌株Y4可以在好氧条件下有效去除培养液中的硝酸盐氮,在初始硝酸盐氮质量浓度为286 mg/L时,48 h脱氮效率可达61.2%。另外试验考察了溶解氧和温度对菌株Y4反硝化效果的影响,结果显示Y4有较高的氧耐受力,在DO为2~11.8 mg/L时都可保持较高的脱氮率;菌株Y4对温度适应性强,在30 ℃时脱氮效率高达90%。试验证明在螺旋升流式SUFR-UCT系统中存在有较好反硝化性能的好氧反硝化菌。  相似文献   

4.
利用聚乙烯醇等通过包埋方式固定化反硝化菌,制备了一种微生物载体,对其生物传质性能进行了验证,碳酸氢钠溶液最适体积分数为0.6%.利用所制备微生物载体对金属表面处理废水进行脱氮处理,考察了处理过程中碳氮质量浓度比、载体填充率等因素对水中氨氮、硝态氮、亚硝态氮、总氮的影响,结果表明当碳氮质量浓度比为2.0,载体填充率为20%时,污水中氨氮质量浓度低于0.1 mg/L,硝态氮、亚硝态氮、总氮处理效率均高于95%.固定化反硝化菌为微生物水处理技术提供了更广阔的应用空间.  相似文献   

5.
一株异养硝化菌的筛选及其脱氮条件   总被引:8,自引:0,他引:8  
从生活污水生物脱氮除磷装置中分离到一株脱氮效果较好的异养硝化菌株,脱氮过程中无亚硝酸盐氮积累质量,只有少量硝酸盐氮积累.在实验室条件下,初步探讨了不同温度、pH值、摇床转速、碳氮比、氨氮质量浓度对YY4菌株脱氮作用的影响.研究结果显示:温度为30℃、pH值为9.0、摇床转速150r/min、m(C)/m(N)为10、氨氮质量浓度为100mg/L时,YY4菌株具有最佳的脱氮效果.应用该菌株对宜兴生活污水和南京某化工厂废水氨氮脱除效果的结果显示,去除率分别为89.54%(9h)和95.79%(36h).  相似文献   

6.
从膜生物反应器中分离出一株异养型高效脱氮细菌,该菌为革兰氏阴性杆菌,命名为HNR.经16S rRNA测序,该菌株属于Acinetobactersp.菌属.以氯化铵为惟一氮源,探讨了不同碳源、pH值、温度及碳与氮质量分数之比w(C/N)对HNR菌株脱氮性能的影响.实验结果表明:以葡萄糖为碳源、pH值为8、温度为30℃、w(C/N)为10时,HNR具有最佳脱氮效果.在好氧条件下,当氨氮初始质量浓度为120 mg/L时,经过72 h的连续培养,其氨氮和总氮的去除率分别达92.5%和89.1%.通过气相色谱能检测到N2,但检测不到N2O.HNR不具有明显的好氧反硝化性能,表明HNR的脱氮途径可能与已报道过的异养硝化好氧反硝化脱氮途径有所不同.  相似文献   

7.
目的研究反硝化聚磷菌的富集及菌株反硝化除磷特性,丰富反硝化聚磷菌的菌种,为今后反硝化脱氮除磷技术的实际应用提供参考.方法利用活性污泥为基质快速富集以NO_3~-作为电子受体的反硝化聚磷菌,并用专性培养基于稳定运行的A~2SBR反应器中分离得到2株高效反硝化聚磷菌N4. 3和N4. 1,对两株菌的反硝化除磷效能进行研究.结果在两阶段驯化条件下,共历时36天反硝化聚磷菌富集成功,反硝化除磷系统出水COD、TP和NO_3~--N的质量浓度分别为24. 52 mg/L、0. 37mg/L和2. 64 mg/L; N4. 3和N4. 1均具有PHB及异染颗粒,且革兰氏染色均呈阳性; N4. 3和N4. 1硝态氮去除率分别为95. 83%、96. 30%,总磷去除率分别为88. 34%、91. 42%.结论 A~2SBR系统中反硝化聚磷菌富集效果较好,并且分离出两株具有较高的反硝化吸磷能力的菌株.  相似文献   

8.
自养细菌增长动力学表达式表明,在较低的起始硝态氮浓度和自养细菌浓度条件下,通过分析硝态氮浓度随时间的变化趋势,可以确定自养细菌最大增长速率.采用间歇式活性污泥法测定了自养细菌最大增长速率,分析了测定过程中的影响因素.试验结果表明,硝化系统内自养细菌最大增长速率在20 ℃时的变化范围为0.32~0.54 d-1,平均值为0.45 d-1.温度、溶解氧、接种污泥浓度、起始氨氮浓度以及污水中的有机物均会对自养细菌最大增长速率的测定产生重要影响.  相似文献   

9.
自养细菌增长动力学表达式表明,在较低的起始硝态氮浓度和自养细菌浓度条件下,通过分析硝态氮浓度随时间的变化趋势,可以确定自养细菌最大增长速率.采用间歇式活性污泥法测定了自养细菌最大增长速率,分析了测定过程中的影响因素.试验结果表明,硝化系统内自养细菌最大增长速率在20 ℃时的变化范围为0.32~0.54 d-1,平均值为0.45 d-1.温度、溶解氧、接种污泥浓度、起始氨氮浓度以及污水中的有机物均会对自养细菌最大增长速率的测定产生重要影响.  相似文献   

10.
采用传统活性污泥法处理模拟生活污水,考察了温度、pH值、C/N比及振荡时间对脱氮效果的影响.实验结果表明,在温度为30℃、pH为7、C/N比是12:1及振荡时间为12h时,污水中氮去除效果最好,脱氮效率可达90%.  相似文献   

11.
为改善强碱环境下微生物脱氮效率低下的问题,从上海市稻田土壤中分离出一株具有强碱适应能力的好氧反硝化菌。经细胞形态学观察及16S rDNA分析,鉴定其为琼氏不动杆菌(Acinetobacter junii),并命名为琼氏不动杆菌5-2。结合单因素影响试验考察该菌株在不同环境条件下的脱氮效果,发现其在一定pH值(7.0~12.0)及盐质量浓度范围(10~30 g/L)内,均能保持较高的硝氮去除率(>90%)。在以乙酸钠为碳源、硝酸钾为氮源、碳氮质量比(m(C)/m(N))值为12、温度为35℃、转速为90 r/min、初始pH值为10.0、初始硝氮质量浓度为41.07 mg/L的条件下培养120 h后,该菌株对硝氮及总氮的去除率分别为97.83%及65.85%,同时,对该菌株好氧反硝化相关酶活性及基因进行检测。研究结果表明,琼氏不动杆菌5-2具有高效好氧反硝化能力,有望应用于处理实际含氮废水。  相似文献   

12.
针对光伏废水中含有的高浓度硝态氮(高于600 mg/L),采用连续流生物膜法对污水进行反硝化处理,并设置连续流活性污泥法作为对比;优化连续流反硝化的运行工况,研究不同碳氮质量比(分别为3:1、3.5:1和4:1)和水力停留时间(8、10和12 h)对于反硝化的影响;考察进水硝态氮浓度对反硝化的影响.结果表明:通过连续流...  相似文献   

13.
该文主要研究溶解氧对低碳源污水一体化处理工艺脱氮除磷的影响。经研究结果显示,当溶解氧的平均值为0.18 mg/L时,系统的实际出水可以达到国家低碳源污水一体化处理标准A级,如果进行污水工艺处理时,使用的溶解氧含量过高或者是过低均会对相关系统的脱氮除磷效果造成影响。当系统中的相关溶解氧平均值在0.18 mg/L时,低碳源污水一体化处理系统中将会出现反硝化吸磷现象,同时还会出现硝化反硝化脱氮现象以及全程反硝化脱氮现象。与此同时,经过反硝化吸磷反应和硝化反硝化脱氮的化学反应,极大程度上去除了污水中的氮总含量,有效降低低碳源污水一体化处理工艺脱氮除磷中所耗费的碳源量与耗氧量,进一步提高了低碳源污水一体化处理工艺脱氮除磷的效果。  相似文献   

14.
以经碱处理过的玉米芯作为固体碳源处理低C/N比污水,考察玉米芯为0,2.5,5.0和7.5g时系统中氨氮、硝态氮、亚硝态氮和总氮的去除率﹒实验结果表明:当玉米芯投加量为5.0 g/200 ml时,系统中亚硝态氮的浓度低于0.02mg/L且没有亚硝态氮的积累;出水NH3-N,NO3-N和TN去除率分别为93%~95%,92%~96%和93%-97%﹒通过考察不同玉米芯投加量对出水COD浓度的影响,可以看出玉米芯投加量过多会造成二次污染的现象﹒因此,在强化低C/N污水的技术中,应将固体碳源投加量控制在合适范围内,对于C/N比为1.5的污水,固体碳源的最佳投加量为5.0 g/200 ml﹒  相似文献   

15.
采用SBR反应器,以硝酸钾为氮源驯化活性污泥,筛选分离出两株好氧反硝化菌X1和X2进行生理特性、脱氮性能及N2O逸出量的研究.结果表明:两菌株均能在完全好氧的条件下(DO2mg/L),利用KNO3进行反硝化,总无机氮去除率分别为72.1%和78.9%;以KNO2为氮源时,菌株X1的总无机氮去除率仅为16%,而菌株X2的总无机氮去除率则达到73%;好氧反硝化过程中菌株X1的N2O逸出量高于菌株X2,这与硝酸盐的积累相关;碳源种类对菌株N2O逸出量有较大影响,琥珀酸钠做碳源时N2O逸出量最高.  相似文献   

16.
本文采用SBBR反应器处理人工模拟废水,考察在不同C/N值条件下反应器的处理效果及氮的转化情况。试验结果表明,在室温条件下,进水氨氮浓度为120mg/L左右,保持溶解氧在2.0-2.5mg/L,运行方式为2.5(曝气)-1.5(停曝)-2.5(曝气)-1.5(停曝),当C/N值为5、6时系统脱氮效果最好,且系统主要脱氮方式为同步硝化反硝化和短程硝化反硝化。  相似文献   

17.
为了解处理生活污水的强化生物除磷(EBPR)系统的除磷和脱氮特性,采用SBR接种普通活性污泥,通过逐步提高进水COD浓度的方式,结合短污泥龄控制,实现了EBPR系统的快速启动,并对启动后系统的脱氮除磷特性进行了研究.试验结果表明:当进水COD浓度由200 mg/L左右逐步提高至500 mg/L左右时,29 d可实现EBPR系统的启动,此后30 d内出水磷浓度稳定维持在0.5 mg/L以下,磷去除率平均达99.4%.该系统还可长期高效稳定地用于高磷污水(含磷40mg/L)的处理.成功启动后的EBPR系统内聚磷菌(PAOs)为优势菌,占全菌总数的34%±3%,但也存在硝化反硝化菌和聚糖菌.在EBPR系统稳定运行时的好氧段,PAOs吸磷的同时伴随着脱氮菌群的同步硝化反硝化(SND)作用,使得平均总无机氮(TIN)损失达7.6 mg/L,系统总氮(TN)去除率在70%左右.EBPR系统内除磷耦合同步硝化反硝化,可实现污水的脱氮除磷.  相似文献   

18.
为提高活性污泥对氨氮的处理效果,在生化反应器中加入海绵铁,形成生物海绵铁体系。以模拟生活污水为处理对象,研究了生物海绵铁对生活污水的脱氮效果。结果表明:生物海绵铁法脱氮效果良好,平均脱氮率为97.5%。氨氮浓度和C/N比会影响脱氮效果;污泥性能得到改善。可用于实际生活污水的脱氮处理。  相似文献   

19.
为了解决A2O工艺生物脱氮除磷不稳定、出水氮磷难以达标的问题,在A2O工艺好氧段添加悬浮式生物填料以保证高质量浓度的硝化细菌及高硝化率.考察不同COD与总氮质量浓度比x、旁流比对工艺脱氮和除磷的影响.此外,在COD与总氮质量浓度比较低条件下对装置进行了改装,即在厌氧段前添加了一段预缺氧段,使其达到深度脱氮除磷的效果.试验结果表明:当进水x=3.6~8.1,COD,TN和TP去除率根据硝化液回流比的不同而不同,x和硝化液回流比越高,出水硝态氮越低;当x为8.1,硝化液回流比为300%时,脱氮除磷效果最好,其出水硝态氮质量浓度仅为4.23 mg/L.当COD与总氮质量浓度比较低时,TP的去除率较低,当x>4.5时,磷的去除率几乎为100%.A2O系统中生物膜硝化作用占总硝化作用的81.6%,而活性污泥硝化作用只占18.4%.这说明生物膜具有良好的硝化作用.  相似文献   

20.
在间歇式反应器(SBR)中经20d驯化后,普通消化污泥具有亚硝化功能.然后接种厌氧颗粒污泥,控制反应条件:温度21 ℃,pH7.5~8.5,溶解氧(DO)质量浓度0.5~1.0 mg/L, 25 d后完成厌氧颗粒污泥向好氧亚硝化颗粒污泥的转变.好氧亚硝化颗粒污泥具有较好的脱氮效果,一个反应周期内氨氮(NH 4N)去除率达到91.4%,总氮(TN)去除率达到70.6%,亚硝酸盐氮与硝酸盐氮质量浓度比(ρ(NO-2N)/ρ(NO-3N))>0.70,反应器实现了同步亚硝化反硝化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号