首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
为改善IHS变换对图像细节信息的丢失,提出了一种基于改进IHS变换的遥感图像融合新算法.针对IHS变换方法对多光谱图像和全色图像进行融合会丢失较多的光谱信息,利用基于变异量子行为的粒子群优化算法(MQPSO)改进IHS变换过程,通过MQPSO算法来求解IHS变换中光谱强度分量,将图像融合问题归结为最优化问题.仿真实验结...  相似文献   

2.
针对非采样Contourlet变换(NSCT)在多光谱图像与全色图像融合时复杂度较大的问题,提出一种IHS变换域的多光谱图像与全色图像NSCT融合算法.该算法首先对多光谱图像进行IHS变换,然后再将强度分量图像与全色图像进行基于NSCT的融合,得到新的强度分量,最后再做IHS逆变换得到融合图像.实验结果表明,将IHS变换与NSCT相结合,有效地减少了融合计算量.另外与小波变换、Contourlet变换、NSCT等多分辨率分析的遥感图像融合算法相比,该算法还有效地减少了融合图像的光谱扭曲,提高了融合图像的视觉效果.  相似文献   

3.
研究了IHS变换和主成分分析(PCA)变换的图像融合方法,并针对IHS变换的融合算法和PCA变换的融合算法的优缺点,提出了一种将两者相结合的算法.通过分析实验数据,验证了改进算法优于原来的基于IHS变换融合算法和基于PCA变换融合算法.  相似文献   

4.
该文提出用分数阶样条小波和Intensity-Hue-Saturation(IHS)变换结合的方法进行高分辨率全色图像和低分辨率多光谱图像的融合。分数阶样条小波由于具有良好的分数阶逼近性能,在分解图像时可得到更多的细节,而IHS变换在处理图像时会扭曲光谱特性,通过两者的结合,可得到高分辨率、多光谱图像。将该方法和传统‘Daubechies3’小波与IHS变换相结合的方法比较,实验结果证明了分数阶样条小波更多地保留了高分辨率图像的空间特性和低分辨率图像的光谱特性。  相似文献   

5.
基于IHS变换和主成分变换的遥感影像融合   总被引:1,自引:0,他引:1  
针对IHS变换融合影像时存在较严重的光谱失真现象,利用主成分变换对IHS变换法进行了改进.新方法首先对多光谱影像做IHS变换得到亮度I,色度H,饱和度S三个分量,然后用I分量和高分辨率全色影像做主成分变换,并提取第一主分量,并以I为标准进行直方图匹配;将匹配后的影像与H,S进行IHS反变换得到新的多光谱图像.主观视觉分析和客观参数表明,该方法不仅很好的保留了影像的光谱信息,而且兼顾了地物细节能力的表达.  相似文献   

6.
本文提出一种基于Contourlet变换与IHS色彩空间的图像融合方法。该方法首先对彩色图像进行IHS空间转换,然后对待融合图像的I分量做融合规则融合即首先对I分量做Canny算子运算。在计算出图像的边缘点后,再对边缘点和非边缘点做不同规则的融合。该方法对彩色图像的处理能有效的提供图像的清晰度和相关系数。实验仿真结果表明:与加权融合、PCA融合方法比较,该方法能有效改善融合质量并取得较好的视觉融合效果。  相似文献   

7.
基于IHS变换的遥感影像融合方法   总被引:2,自引:0,他引:2  
为了解决遥感影像空间分辨率与光谱信息不能兼顾的问题,即全色影像具有较高的空间分辨率但缺乏光谱信息,多光谱影像光谱分辨率高,光谱信息丰富,但其空间分辨率低的问题,采用MATLAB实验工具,基于IHS原理对遥感影像数据进行融合处理,试验结果表明使用该融合方法显著提高了多光谱影像的空间分辨率,同时保留了丰富的光谱特征,提高影像的判读、识别、分类能力,融合后图像的信息量比原始图像有明显增加,而且图像的细节反差、纹理和清晰度得到较大的提高,融合图像质量明显改善.  相似文献   

8.
针对分别使用IHS变换和小波技术进行融合实验时有较大的色彩畸变的问题,提出了一种基于结构相似度的IHS与小波变换相结合的融合算法.首先对多光谱影像进行IHS变换,对多光谱影像的亮度分量Ⅰ和全色波段影像进行小波分解;然后采用二者高频系数绝对值较大者作为新的Ⅰ分量的高频系数,而新的Ⅰ分量的低频系数由二者的低频系数进行加权平均获得,权值通过计算Ⅰ与全色波段的SSIM来自适应地确定.实验结果表明该算法在提高影像分辨率的同时,能很好地保持影像的光谱特征.  相似文献   

9.
基于小波变换的多光谱图像与全色图像融合,研究当小波基、分解层数、区域大小及IHS变换不同时与图像融合结果的关系.利用熵、颜色偏差等参量,对不同融合结果的性能进行了评价.实验结果表明,采用coif小波基、3~4层小波分解、特征窗口大小5×5、球体变换,可取得较理想的融合效果.  相似文献   

10.
一种改进的IHS图像融合新算法   总被引:2,自引:0,他引:2  
在详细研究图像色调饱和度与强度关系的基础上,利用图像强度与色调饱和度有相似平滑度这一性质提出了一种将最小二乘原理应用到IHS图像融合中的新方法.该方法通过图像平滑度限定条件和能量守恒限定条件,使用最小二乘法估计融合后图像的色调饱和度分量.根据主观目视判断和客观评价指标对融合结果进行了比较和分析.仿真试验表明,新方法能够使融合图像具有较高的空间分辨率,能很好地保持原有多光谱图像的光谱特性;可以显著减小融合后图像的颜色偏差,从而提高了融合图像的质量.  相似文献   

11.
针对目前最新发展的Contourlet变换较小波变换能提供更丰富的方向和形状,有助于捕捉图像中的几何结构,提出了一种新的基于Contourlet变换和IHS(Intensity-Hue-Saturation)变换的遥感图像融合方法,首先对多频谱图像进行IHS变换,然后对所得的亮度分量和全色图像分别进行Contourlet变换,再对得到的低频近似系数和高频细节系数采用一定的融合规则得到一个新的亮度分量,并对其做逆向的IHS变换得到融合图像.实验结果表明,该方法在保留多频谱图像的频谱信息的同时增强了融合图像的空间细节表现能力,提高了融合图像的信息量,并且优于同等条件下的小波变换方法,该方法是有效可行的.  相似文献   

12.
正交小波包分析能够将信号(图像)频带进行多层次划分,对多分辨分析没有细分的高频部分进一步分解,从而提高了频率分辨率,能有效地提取特定的频率成分。首先推导了小波包分析的基本原理,并给出了基于正交小波包分析的遥感图像融合算法,最后,通过实例说明正交小波包分析的有效性和优越性。  相似文献   

13.
基于小波变换的遥感图像融合方法   总被引:1,自引:0,他引:1  
概述了图像融合技术的常用方法,着重介绍了基于小波变换的图像融合原理、融合算法与融合规则,并分析了不同的小波基及小波分解层数对图像融合效果的影响,最后总结了有效的图像融合结果的评价指标。  相似文献   

14.
基于小波变换的快鸟遥感影像数据融合   总被引:8,自引:0,他引:8  
在给出小波变换基本模型的基础上 ,探讨了采用小波正交分解与重构来进行遥感信息融合的基本原理 .快鸟影像数据是目前新的高分辨率卫星遥感数据产品 ,在分析该数据特点的基础上 ,考虑采用小波变换应用于快鸟高分辨率卫星影像数据全色和多光谱数据的融合 ,并给出了具体的数学模型和实现流程 .作为实际应用 ,又详细给出了小波用于遥感数据融合的中间过程和最后结果 ,并通过分析影像融合的效果 ,提出了有效的成果调整方法 ,且说明了该方法是切实有效的  相似文献   

15.
提出了一种基于二代Curvelet变换和PCA变换的图像融合方法.首先对低分辨率多光谱图像进行PCA变换得到各个主成分,然后对高分辨率图像和低分辨率图像的前三个主分量进行Curvelet变换,并进行系数调整实现融合.最终得到PCA反变换后的融合图像.经实验结果表明,该方法有效,优于传统的融合方法.  相似文献   

16.
当前多数遥感图像融合算法主要是依靠比值法选取全色图像或多光谱图像中的其中一个高频子带作为高频融合系数,忽略了另一个高频系数所包含的信息,易导致融合图像出现模糊以及光谱失真等不足.对此,本文提出了基于非下采样Contourlet变换与锐度制约模型的遥感图像融合算法.通过亮度-色调-饱和度(IHS)变换,获取多光谱图像的I,H,S分量,利用非下采样Contourlet变换对多光谱图像的I分量以及全色图像进行多尺度精细分解,得到相应的低频子带与高频子带;利用像素点邻域的像素值之差构造锐度制约模型,完成低频子带的融合.考虑多光谱图像中I分量与全色图像的高频子带特征,构造高频子带融合模型,完成高频子带的融合;将融合后的高频子带与低频子带通过非下采样Contourlet逆变换,输出融合图像的亮度分量珔I,将珔I与H,S分量进行IHS逆变换,形成最终的融合图像.仿真实验显示,与当前遥感图像融合方法相比,所提方法的融合图像具有更高的视觉质量,可保留更多的光谱以及边缘等图像细节信息.  相似文献   

17.
给出了一种非降采样Contourlet变换和HIS变换相结合的遥感图像融合算法.非降采样Contourlet变换是一种平移不变的小波变换方法,且具有良好的方向选择性,其对图像做多分辨率分析得到的高频子带,有效地表达了图像中的细节特征信息.结合HIS变换,非降采样Contourlet变换将细节注入到多光谱图像得到的融合图像,不但具有较高的空间分辨率,而且有效保持了多光谱图像的光谱特征.实际的SPOT全色图像和TM多光谱波段融合结果表明,所提议方法的性能优于目前广泛使用的小波域方法如离散小波变换和A Trous小波变换以及Contourlet变换等融合方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号