首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
研究以陶粒粒子为载体,采用快速排泥挂膜法,在内循环三相流化床反应器运行过程中逐渐加大进水量和进水浓度,使微生物适应高氨氮废水环境;研究了水力停留时间、NH4+-N浓度负荷冲击对NH4+-N去除率的影响.结果表明:内循环三相流化床可用于处理高NH4+-N废水;底物浓度越高水力停留时间越长;内循环三相流化床具有较好的抗负荷冲击能力,有利于解决实际废水水质不稳定难以达标排放的困难.  相似文献   

2.
污水处理的固定化微生物与游离微生物性能的比较   总被引:20,自引:3,他引:20  
固定化微生物技术在污水处理中的应用已经引起越来越多的重视.本文重点研究固定化微生物处理焦化污水时的主要性能.通过对进水与出水氨氮(NH4+-N)、挥发酚及化学耗氧量(COD)的检测分析,考察了温度、pH值、氨氮和有机负荷等对固定化微生物性能产生的影响,采用电镜和光镜观察了固定化微生物的形态,并通过克氏定氮法测定了高效微生物菌群在FPUFS载体上的生物负载量,得出了固定化微生物系统去除COD、挥发酚和氨氮的工艺设计参数.结果表明:固定化微生物在温度为10-55℃、pH值4-11范围内具有较好的活性,200mg/L以上的NH4+-N以及150mg/L以上的NH3对硝化菌及亚硝化菌没有抑制.在有机负荷较高的情况下,仍具有较好的硝化作用.在满足出水中COD≤100mg/L,及NH1+-N≤15mg/L时,相应的容积负荷分别为:COD容积负荷最大为8.91kg/m3·d,NH4+-N容积负荷最大为1.16kg/m3·d.在固定化微生物系统中,生物负载量为32g/L,好氧、兼性和厌氧菌同时存,硝化和反硝化同时进行,丝状微生物较为发达,这为高浓度、难降解有机物及高氨氮污水降解奠定了基础.本文还在相同条件下与游离微生物性能进行了比较,说明固定化微生物技术在各个方面所表现出的性能都较后者具有明显的优势.  相似文献   

3.
通过氨氮污泥负荷影响试验和DO影响试验数据分析,得出以下结论:1)高浓度亚硝化系统氨氮降解率及亚硝化率均随着NH4+-N污泥负荷的增高而下降。HRT<2d系统随NH4+-N污泥负荷增加,氨氮降解率迅速下跌到25%~29%;HRT≥2d系统随NH4+-N污泥负荷增加,氨氮降解率缓慢下降到50%~60%;HRT=2.5d和HRT=3d的系统中亚硝化率随NH4+-N污泥负荷增加而下降的趋势不甚明显;HRT=5d系统中亚硝化率的下降是由于污泥产生适应性的造成。因此高浓度亚硝化反应系统的NH4+-N污泥负荷不宜过高。2)随着DO的升高,高浓度亚硝化系统的氨氮降解率一直逐步升高。DO<0.7mg/L是不利于氨氮降解的;DO>2mg/L时氧化的NH4+-N都转变成了增加的NO3--N,亚硝化率下降。将DO控制在0.7~1.3mg/L之内可保证较佳的NH4+-N降解率和亚硝化率。  相似文献   

4.
目的研究ANAMMOX工艺在生物滤池中的脱氮性能,以提高该工艺在实际运行中的脱氮效率.方法采用ANAMMOX生物滤池作为反应器,控制反应水温在25~31℃,逐步增加进水NH+4-N和NO-2-N的基质质量浓度,研究ANAM M OX生物滤池工艺在不同质量浓度负荷下各滤层脱氮规律.结果 ANAMMOX生物滤池生物量分布呈现先增后减再逐渐趋于平缓的趋势.厌氧氨氧化生物量集中分布在0~50 cm滤层,进水口处生物量较低.进水NH+4-N和NO-2-N的基质质量浓度分别在90 mg/L、120 mg/L时去除效率最佳.当进水NH+4-N和NO-2-N的基质质量浓度分别高于120 mg/L、160 mg/L时,ANAMMOX脱氮性能受到较大的抑制作用.结论进水NH+4-N和NO-2-N的基质质量浓度对ANAMMOX脱氮性能有较大影响.  相似文献   

5.
基于高精度测量仪器Vectrino小威龙点式流速仪,对崇明东滩高潮滩盐沼前缘进行为期7d的连续观测和采样.采用纳氏试剂光度法对样品进行分析,分析结果表明:NH4+-N浓度分布在0~1.1652 mg·L-1,平均为0.3830 mg·L-1;涨潮时潮滩沉积物成为NH4+-N的源,落潮时潮滩沉积物表现为NH4+-N的汇;沉积物一水界面NH4+-N垂直分布存在复杂的变化特征;近底层10cm处潮汐流速对NH4+-N浓度的影响机制十分复杂.  相似文献   

6.
为探讨饮用水生物滤池对NH4+-N去除和"氮亏损"现象的影响因素,测定生物滤池进出水中NH4+-N,NO2--N,NO3--N等指标.结果表明,陶粒生物滤池对NH4+-N的去除率从14.97%到60.99%,活性炭生物滤池对NH4+-N的去除率从16.59%到83.02%;陶粒和活性炭滤池对NH4+-N的去除率都随着流速的增加而降低;陶粒滤池内NH4+-N的去除率随着气水比和C∶N的增加而先增加后下降;NH4+-N的去除率在活性炭滤池内随C∶N的增加而降低,气∶水的增加而增加;气∶水对两种生物滤池中NH4+-N去除的影响最大.陶粒生物滤池氮亏损的量从0.10 mg/L到0.70 mg/L,活性炭生物滤池氮亏损量从0.11 mg/L到1.01 mg/L;氮亏损量随着流速增加而降低,随着气水比增加而增加,随着C∶N的增加而先下降后增加;气水比对陶粒和活性炭生物滤池的氮亏损量影响最大.  相似文献   

7.
对土壤浸提液、蒸馏水、1mol.L-1KCl及含铵溶液等四种溶液不同保存方式下NH4+-N浓度的变化进行了试验。结果表明室温时暴露在空气中的蒸馏水、1mol.L-1KCl及含铵溶液,三天之内NH4+-N均呈现上升趋势,而土壤浸提液在一定浓度范围内NH4+-N也为上升趋势,但当原有NH4+-N达到一定浓度时则表现为下降趋势;将以上四种溶液保存在5℃的冷藏柜中,一个月之内NH4+-N浓度基本稳定。+  相似文献   

8.
以不同浓度的畜禽养殖废水为对象,研究藻菌体系对废水中的NH4+-N、TP和COD的去除效果。结果表明:藻菌体系对不同浓度的畜禽养殖废水的处理效果不同,当废水中NH4+-N、TP和COD浓度分别小于44.4 mg/L、6.4 mg/L和500 mg/L时,藻菌微生物的生长速度快、生物量大,对废水处理效果好;当处理时间为6 d时,NH4+-N、TP和COD的去除率分别大于90%、84%和80%,该实验结果为构建高效藻类塘提供理论依据。  相似文献   

9.
以扬州古运河沉积物为对象,将从中驯化分离到的土著硝化、反硝化细菌固定于斜发沸石之上,构建原位联合修复技术并应用于试验水体;着重考察斜发沸石吸附—解吸特性及挂膜前后对沉积物NH4 -N释放的抑制效果差异。结果表明:25℃下,斜发沸石对NH4 -N去除率可达90%以上,吸附极限4.761905mg/g,吸附过程符合Langmuir等温模型;温度上升有利于沸石对NH4 -N吸附;斜发沸石去除NH4 -N以离子交换为主,吸附为辅,在不同的NH4 -N浓度序列下(10~300mg/L),KCl溶液对沸石的解吸率均高于NaCl和CaCl2溶液;通过结合固定化微生物技术,挂膜沸石NH4 -N去除率高于无生物膜沸石(前者12d接触去除率达94.64%),可有效抑制沉积物NH4 -N释放,并兼具脱氮功能,从而降低污染底泥氮负荷。  相似文献   

10.
应用两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)深度处理早期和晚期垃圾渗滤液.首先在一级UASB(UASB1)中实现反硝化,在二级UASB(UASB2)中通过产甲烷降解有机物,在A/O反应器的好氧区进行NH4+-N的硝化,最后在SBR中去除残余NH4+-N及通过反硝化去除NO2--N和NO3--N深度脱氮.试验结果表明:早期渗滤液ρ(COD),ρ(TN)和ρ(NH4+-N)分别为14.8,1.8和1.3 mg/mL,最终出水ρ(TN),ρ(NH4+-N),ρ(NO2--N)和P(NO3--N)分别为28,4,3.4和1.9 mg/L,获得了大于98%的TN和NH4+-N去除率.晚期渗滤液ρ(COD)为2.5 mg/mL;ρ(TN),ρ(NH4+-N)分别为3.0和2.9 mg/mL时,获得99%以上的TN和NH4+-N去除率.最终出水ρ(NH4+-N),ρ(NO2--N)和P(NO3--N)都小于10 mg/L,最终出水ρ(TN)为26~32 mg/L.  相似文献   

11.
运用单链构象多态性(SSCP)技术,采用真细菌的通用引物SRV3-2P和BSF8/20,分析了处理大豆蛋白废水的厌氧折流板反应器(ABR)中的厌氧污泥微生物群落结构,并通过UPGMA群落聚类分析方法对各格室细菌的遗传距离进行了分析。结果发现,有机负荷不仅会影响ABR内各细菌类群的生长,同时也会改变细菌群落的结构和不同细菌类群在各格室的分布;随着有机负荷的逐步提高,ABR各格室细菌的遗传距离逐渐增大,特异性随之增加;用SSCP和UPGMA群落聚类分析方法分析污泥样品,可以对ABR的运行起到很好的指导作用。  相似文献   

12.
快速高效堆肥处理城市污泥微生物多样性研究   总被引:4,自引:0,他引:4  
采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术对城市污泥堆肥工艺中微生物种群多样性进行初步研究,结果表明污泥中的微生物种群有显著的改变,同时对堆肥后污泥中的微生物进行了尝试性探讨,为城市污泥微生态和高效堆肥工艺的研究提供了新的实验依据。  相似文献   

13.
PCR-DGGE研究厌氧复合床反应器中微生物种群多样性   总被引:2,自引:0,他引:2  
利用PCR-DGGE技术对处理抗生素废水的厌氧复合床中的微生物种群多样性进行研究.结果显示,厌氧复合床反应器中微生物种群丰富,距底部3m以下种群最多且相似性较高,3m以上的填料层部位微生物种群明显减少,除产甲烷菌为主外,污泥床层与填料层中分别有不同的优势菌种与产甲烷菌协同作用.  相似文献   

14.
采用膜生物反应(MBR)工艺连续流小试处理生活污水,对其膨胀过程进行机理解析.结合显微观察和醌指纹技术,对活性污泥混合液中的微生物群落结构的生态演替过程进行连续监测分析.结果表明,MBR内活性污泥微生物多样性低于普通活性污泥,微生物醌的类型也有所区别.MBR内活性污泥从未膨胀到膨胀严重期的活性污泥微生物多样性指数从10.90降到7.12;微生物种分布均匀度指数从0.84降到0.51,发生了逆行演替.对微生物醌组成的分析发现,微生物优势种群随环境变化而波动,UQ-9和MK-6在丝状菌膨胀的污泥中呈现明显优势.  相似文献   

15.
采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术,研究Fe^2+,Ni^2+金属离子对经2-氯酚(2-CP)驯化后的厌氧生物反应器颗粒污泥的微生物种群结构的影响.结果表明,经2-CP驯化后,厌氧体系微生物多样性减少,产生了能适应或降解2-CP的主要菌群发光杆菌属、埃希氏菌属和志贺氏菌属.投加Fe^2+,Ni^2+后,降解2-CP的厌氧污泥微生物多样性均呈减少趋势,其中,加Fe^2+后的厌氧体系微生物多样性明显减少,并产生新的条带,经分析,证明为专性厌氧梭菌属.  相似文献   

16.
活性污泥基因组DNA快速提取新方法及其指纹分析   总被引:8,自引:1,他引:7  
建立了从活性污泥中快速提取基因组DNA的新方法,过程包括粗提与精制两个步骤,简化了繁琐的提取程序,提高了提取效率.用该方法提取的基因组DNA做模板,进行扩增核糖体限制性酶切片断分析(ARDRA)及核糖体基因间区序列分析(RISA),均获得了理想的多态性指纹图谱;采用两对特异性引物(鞘氨醇单胞菌属和氨加氧酶基因)对所提污泥基因组DNA进行扩增,均获得了正确的PCR产物.该方法提取的污泥基因组DNA不但适用于研究污泥系统中菌群多样性分析,而且还可以对特定基因进行跟踪监测。  相似文献   

17.
为考察2,4,6-三氯苯酚(2,4,6-TCP)废水处理过程对污泥性能和菌群结构的影响,利用序批式生物反应器(Sequencing Batch Reactor,SBR)处理2,4,6-TCP模拟废水,通过逐步提高进水2,4,6-TCP浓度(10-50 mg/L)的方式进行试验。结果表明,经10 mg/L 2,4,6-TCP驯化的活性污泥可有效降解进水化学需氧量(Chemical Oxygen Demand,COD)和2,4,6-TCP,提高进水2,4,6-TCP浓度基本不影响污泥性能。当处理不同浓度的进水2,4,6-TCP的SBR处于稳定运行阶段末期时,污泥絮体中多糖和蛋白质含量随进水2,4,6-TCP浓度的提高而升高,脱氢酶(Dehydrogenase,DHA)、过氧化氢酶(Catalase,CAT)和超氧化物歧化酶(Superoxide Dismutase,SOD)的活性同样随进水2,4,6-TCP浓度的提高而升高。经2,4,6-TCP驯化的污泥中降解2,4,6-TCP的功能菌属显著富集,虽然不同浓度的进水2,4,6-TCP和不同的SBR运行阶段影响微生物多样性,但不同污泥中的微生物菌属具有一定的相似性。因此,通过逐步提高进水2,4,6-TCP浓度的方式驯化污泥可实现废水中2,4,6-TCP的有效去除。本研究的实施可为氯酚废水及其他难降解工业废水的处理提供科学指导。  相似文献   

18.
 分别运行升流式厌氧污泥床(UASB)反应器和连续流搅拌槽式反应器(CSTR)并使其达到稳定运行状态,在有机负荷率(OLR)均为6.0kg·m-3·d-1的条件下,对比分析了二者在稳定期的运行特性和产甲烷菌群的组成。结果表明,UASB的化学需氧量(COD)去除率为95%,显著高于CSTR的COD 去除率(84%)。然而,CSTR系统中的活性污泥的比产甲烷速率(315L·kg-1·d-1)和比COD去除率(0.85 kg·kg-1·d-1)则显著高于UASB的260 L·kg-1·d-1和0.67 kg·kg-1·d-1。采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)指纹分析技术对系统稳定期的活性污泥进行分析的结果表明,UASB系统的优势产甲烷菌为Methanosaeta conciliiMethanospirillum hungatei,而CSTR系统中的优势产甲烷菌为Methanosarcina mazeiiMethanobacterium formicicum。污泥微生物群落组成及其代谢特征的不同是造成厌氧处理系统效能差异的内在原因。UASB和CSTR在COD去除效能和污泥比活性方面各有所长,在实际应用中,须根据废水水质和预期处理程度合理选用。  相似文献   

19.
为了探究颗粒污泥对燃煤厂烟气脱硫废水营养型污染物的去除及微生物种群结构的变化特征,建立序批式厌氧/好氧反应器,以预处理后的燃煤厂烟气脱硫废水为研究对象,分析了污泥颗粒化进程中污泥特征,营养型污染去除及微生物群落结构的演变规律。结果表明污泥颗粒化进程中污泥沉降指数(SVI)显著下降,污泥中生物量显著升高,在120 d时,SVI下降至62 mL/g,混合液总悬浮固体(MLTSS)升高至7.1 g/L。此外颗粒污泥胞外聚合物中蛋白质(PN)显著提高,PN/多糖(PS)升高至2.71-2.74。在稳定运行期,颗粒污泥对COD,NH4+-N及总磷(TP)去除效率分别高达89.25-89.56%,93.4%和73.2%。微生物群落结构演变揭示污泥颗粒化进程提高Comamonadaceae及Pseudomonadaceae的相对丰度,从而提高脱氮除磷效率。  相似文献   

20.
为探究复合人工微生物组对制革废水处理体系中微生物群落的影响,在传统的厌氧/好氧(A/O)污水处理工艺处理制革废水的基础上,投加微生物复合菌形成人工微生物组。利用复合人工微生物组强化废水处理,应用高通量测序技术测定各样品中的细菌16S rRNA V3-V4变异区序列,并对测序数据进行生物信息学分析、Alpha多样性分析以及物种组成分析。结果表明,投加微生物组后,化学需氧量(COD)和氨氮的处理效果得到提升,COD的去除率约为82.60%,氨氮的去除率约为99.47%。高通量测序结果表明,人工投加微生物组使得活性污泥中微生物群落丰度以及多样性提高,污染物降解功能菌占比有所提升,陶厄氏菌属(Thauera)成为其最主要的优势菌属。复合人工微生物组的投加对强化制革废水处理系统有一定潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号