首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
设R是有单位元的交换环,M是R-模,如果对M的任意子模N,存在R的理想I,使得N=I·M,则称M是乘法R-模,本文主要结论是:设M=Rx_1+…+Rx_(?),其中x_i=(a_(1i),a_(2i),…,a_(?))∈R~(1×n),i=1,2,…,n,并且sum from i=1 to (?)a_(ii)=1,那么当R是下列环之一时:(1)整环;(2)半局部环;(3) J(R)=0,有:M是乘法R-模当且仅当F_2(A)=0,其中F_2(A)表示矩阵A=(a_(ij)_(?)中一切2阶子式在R中生成的理想。  相似文献   

2.
(一)设X′=(ξ_1~(?),ξ_2~(?),…,ξ_m)~N(0,R),其中R为m×m非负定矩阵,它的元素为α_(ij),α_(ij)=E(ξ_iξ_j),已知X的n个独立样本X′_i=(x_(i1),…,x_(in))i=1,2,…,n,用其估计α_(ij),i,j=1,2,…,m。本文讨论α_(ij)满足一定约束,比如α_(ij)=α_(|i-j|),即ξ_1,…ξ_m是平稳序列的一段时,α_(ij)的极大似然估计。 (二)下面列举一些求导公式。设M为m×m的矩阵,|M|表M的行列式,M′表M之转  相似文献   

3.
约定 A(≥0)>0为(半)正定 Hermite 矩阵。如果复矩阵 A=(a_(ij))(∈C~(n×n))的特征值都是实数,规定其特征值满足λ_1(A)≥…≥λ_n(A),用σ_1(A)≥…≥σ_n(A)表示 A 的n 个奇异值,规定{δ_1(A),…,δ_n(A)}与{a_(11),……,a_(nn)}为同一集合且|δ_1(A)≥…≥|δ_n(A)|。当实向量 x=(x_1,…,x_n)与 y=(y_1,…,y_n)的分量按递减顺序排列为 x_[1]≥…≥X_[n]与 y_[1]≥…≥y_[n]时,若(?)X_(i)≤(?)y_[i],k=1,2,…,n,则称 y 弱控制 x,记为 x相似文献   

4.
设 A=(a_(ij))是 n 阶对角占优矩阵,即若记 N={1,2,…,n},则对任意 i∈N 都有|a_n|≥sum from j=1 j≠i to n |a_(ij)|.本文所涉及的矩阵总假定是对角占优的。记 J(A)={i∈N||a_(ii)|>sum from j=1 j≠i to n |a_(ij)|}.当 J(A)=N 时,A 为严格对角占优矩阵,当 J(A)≠Φ,且 A 不可约时,A 是不可约对角占优矩阵,这两种矩阵都是非奇异的。当 J(A)≠Φ,A 为可约矩阵时,一九七四年 P.N.shivakumar 和 kim Ho Chew 给出了它为非奇异的一个充分条件:定理.设 A 为可约矩阵,J(A)≠Φ,若对每个 (?)J(A),都存在由 A 中非零元素构成的序列(也叫非零元素链):a_(ii_1),a_(i_1i_2),…,a_(i_(s-1))i_s,i_s∈J(A),那末 A 是非奇异的.P.N Shivakumar 和 kim Ho Chew 在证明此定理时,引用了 M—矩阵的性质,篇幅  相似文献   

5.
有限域上由两个广义对角多项式所确定的簇中的有理点   总被引:1,自引:1,他引:0  
设Fq为有限域,f_l=a_(l1)x(~d~(l)_(11))_(11)…x~(d~((l))_(1_(k1)))_(1_(k1))+a_(l2)x~(d~((l))_(21))_(21)…x~(d~((l))_(2k_2)_(2k_2))+…+a_(ln)x~(d~((l))_(n1))_(n1)…x~(d~((l))_(nk_n)_(nk_n)+c_l(l=1,2)为F_q上的一组广义对角多项式,用N_q(V)表示由f_l(l=1,2)确定的族中的F_q有理点的个数.作者利用Adolphson和Sperber的牛顿多面体理论与指数和工具,证明了ord_qN_q(V)≥max{「∑~n_(i=1)1/d_i」-2,0,其中d_i=max{d~(1)_(ij),d~(2)_(ij)|1≤j≤k_i},1≤i≤n.  相似文献   

6.
群体基因频率的世代演替模型及稳定性讨论   总被引:1,自引:0,他引:1  
群体基因频率是某一个基因座位上的各复等位基因在群体中的相对频率。如果有两个(或两个以上)复等位基因的相对频率改变,则该群体基因频率即发生了变化。定义1:若群体在某个基因座位上有n个复等位基因α_1,α_2,…α_n,它们在第m代的基因频率为p_(im)(i=1,2…n),则该基因座位的群体基因频率可用一个n维向量P_m表示,其中分量p_(im)≥0(i=1,2…n)且n个分量p_(im)的和为1。如果群体是一个大而随机交配的群体,那么第m代群体基因型频率为A_m=P_m·P_m~*(P_m~*为P_m的转置阵)。定义2:若基因α_i突变成基因α_j的频率为μ_(ij),回复突变的频率为μ_(ji),因迁移,选择而引起的基因α_i的改变为μ_(ii)=μ_(ii)~M μ_(ii)~S,那么从第m代到第m 1代群体基因频率的变化可用一演替矩阵π_m表示。P_(m 1)和P_m之间的关系为P_(m 1)=μ_m~(-1)π_mP_m。μ_m~(-1)为归一化常数,以保证第m 1代群体基因频率的n个分量p_im 1之和为1。定义3:若当m趋向无穷大时,P_m的每一个分量的极限都存在,则我们说群体基因频率P_m是极限稳定的。定理1:群体基因频率稳定的充要条件是矩阵π_m的特征方程有正实根,而第m代基因频率向量则正好是这个特征值所对应的一个特征向量。定理2:当μ_(ii)=0,μ_(ij)(i≠j)不随世代而变时,群体基因频率必将趋于极限稳定。作为特例,当n=2时,我们的结果与遗传学中的结论是一致的。  相似文献   

7.
§1定义及记号我们用M_n(R)表示全体n 阶实方阵所成之集合.设A=(a_(ij)∈M_n(R),记号A≥0表示α_(ij)≥0,i,j=1,2,…,n,即A 为非负方阵.定义1 设P∈M_n(R)且P 的每一行和每一列都恰好有一个元素为一个正的实数而其余元素全为0,则称P 为一个n 阶正的广义置换矩阵.  相似文献   

8.
文[2]证明了一个关于三阶行列式的等式。本文利用矩阵及其子式的运算,将等式推广到n阶行列式,且证明更加简洁。 设有n阶方阵A=(a_(ij))_(n×n),B=(b_(ij))_(n×n)。A中的元素工、a_(ij)的代数余子式记作A_(ij),A之伴随矩阵记作A,即A=(A_(ji))_(n×n)。A的子矩阵、子式、代数余子式的表示全按文献[1]记为:块A  相似文献   

9.
已给一个正定矩阵A_(nxn)=[α_(ij)]。我们知道在n维欧氏空间中存在n个矢量e_1,e_2,……,e_n;记e_i与e_j的点乘积为〈e_i·e_j〉,它们使α_(ij)=〈e_i·e_j〉,对i,j=1,2,…,n。定义:称E(A|B_1,B_2,…,B_n)是A在B_1,B_2,…,B_n生成线性子空间x(B_1,…,B_n)中正交投影。若此矢量满足:  相似文献   

10.
§1 引言〔1〕中讨论了具有给定边际分布的概率测度的存在性。它的一种情形是基本空间Y 为有限序集。为确定起见,不妨设Y={1,2,…,n}并具有通常的序:P(Y)表Y 上概率测度之集。μ∈P(Y)。其密度记为{μ_i,i∈Y,},其中μ_i≥0,i=1,…,,n(?)μ_i=1。关于具有给定边际分布的概率测度的一个著名命题是(1.1)命题设μ,v∈P(Y),则存在Y×Y 上的概率测度γ满足(1.2) (i)(?)γ_(ij)=μ_i,i=1,…,n;(ii)(?)γ_(ij)=v_i,j=1,…,n;(iii)(?)i相似文献   

11.
本文得到一类时滞微分程组x_i(t)+sum from j=1 to n p_(ij)(t)x_j(t-τ)-q_i(t)x_i(t-τ_0)=0 i=1,2,…,n:所有解振动的充分条件。  相似文献   

12.
设f_n=sum from i‘j=1 to n(asum from n=1 to n(a_(ij)x_ix_j)(a_(ij)=a_(ji))是一个系数a_(ij)均为整数,行列式为D_n=|a_(ij)|的n元二次型,如果对x_i取任何一组不全为零的实数值时,都使f_n取正值,我们称为f_n为恒正二次型。两个二次型f_n与g_n,如果能经行列式等于±1的线性变换可以互相转化的,称为等价。根据等价性将二次型分成若干类,同一类的二次型都等价,不同类的二次型彼此不等价,用h_n(D_n)表f_n具有行列式为D_n的类数。  相似文献   

13.
本文利用矩阵块对角占优的性质,给出矩阵非奇异的几个判定条件。下面用 R~(n×n)表示 n 阶实方阵的全体,用 C~(n×n)表示 n 阶复方阵的全体,并令,Z~(n×n)={A=(a_(ij))∈R~(n×n)|a_(ij)|≤0,i≠j,1≤i,j≤n}若 A 是非奇异 M 一矩阵。则记 A∈M.引理1 设 A=(a_(ij))∈Z~(n×n),且 A_(ij)>0,1≤i≤n,令 A =,则 A∈M  相似文献   

14.
设p为任一素数,L,s,t为任意自然数,a_(ij)(1≤t,1≤j≤s)为st个整数,对于每个i(1≤i≤t),a_(ij),…,a_(is)不全为P~L的倍数。又记X=max(1,1×1)。考察一次同余方程组a_(il)x_1… a_(is)x_x x_(s i)≡0(modp~L)(1) (1≤i≤St)适合条件-p~L/2相似文献   

15.
考虑下面非线性椭圆型方程非局部边值问题。(1)Lu=- / x_2(a_(ij)(x)( u/ x_2)=f(x,u(x),Du(x),x∈Ω),u|_( Ω)=C(待定常数),- integral from n=( Ω) a_(ij)(x)( u/ x)cos(n,x_i)ds=0,在 f 的某些假设下,本文证明了解的存在性.  相似文献   

16.
§1 前言记p_(ij)=p_(ij)(1)。设P=(p_(ij)是一个k×k矩阵,如果p_(ij)≥0 (i,j=1,…,k)且[sum from j=1 to n p_(ij)=1] (i=1,…,k), (0)则称P为随机矩阵。显然,若P_1,P_2是随机矩阵,则P_1P_2也是随机矩阵。特别地,若P是随机矩阵,则P~n=P(n)=[p_(ij)(n)]也是随机矩阵(n=1,2,…)。如果对一切i,j而言,存在着不依赖于i的极限lim P_(ij)(n)=P_j,则称P具有遍历性。有穷齐次  相似文献   

17.
§1 引言考虑线性模型y=Xβ+U_1ε_1+…+U_kε_k (1)其中 X,U_1,…,U_K 分别是已知的 n×p,n×n_1,…,n×n_k 矩阵,秩 X相似文献   

18.
在求常系数非齐次线性微分方程组特解时,目前书中采用的方法有常数变量法,算子消去法、待定系数法和拉氏变换法,这些方法的计算是复杂的,本文提出算子公式法,计算较简单。 设常系数非齐次线性微分方程组为 dX/dt=AX+f(t) (1) 其中 A=(a_(ij)),a_(ij)(i,j=1,2…,n)均为常数,X与f(t)是n维列向量:X(t)=(x_1(t),x_2(t),…,x_n(t))~T,f(t)=(f_1(t),f_2(t),…,f_n(t))~T。  相似文献   

19.
考察线性常微分方程组 X=a_(11)(t)x+a_(12)(t)y,y=a_(21)(t)X+a_(22)(t)y。设a_(11)+a_(22)=p=常数,a_(11)a_(22)-a_(12)a_(21)=q=常数,本文首先在上述方程的一个特解x=ψ_1(t),y=ψ_2(t)的条件下,给出了系数a_(ij)(i,j=1,2)的公式和求通解的公式。其次,利用这些结果,给出了构造某些方程组的简便方法,这些方程组可以说明具有变系数的线性组的零解的稳定性质不依赖于方程组的特征方程的根,文内特别讨论了构造具有有界系数的方程组的方法.  相似文献   

20.
Schur猜想:如果a_1,a_2,…,a_n是n个彼此不同的整数,m>1,那么多项式f(x)=multiply from i=1 to n((x—a_i)~2)~m 1在有理数域上不可约。迄今只证明了一些特殊情形(如n=2)。本文证明了如下结果:当a_i(i=1,2,…,n)同为奇数或同为偶数时Schur猜想成立。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号