首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
K-means算法以其简单、快速的特点在现实生活中得到广泛应用.然而传统Kmeans算法容易受到噪声的影响,导致聚类结果不稳定,聚类精度不高.针对这个问题,提出一种基于离群点检测的K-means算法,首先检测出数据集中的离群点,在选择初始种子的时候,避免选择离群点作为初始种子.然后在对非离群点进行聚类完成后,根据离群点到各个聚类的距离,将离群点划分到相应的聚类中.算法有效降低离群点对K-means算法的影响,提高聚类结果的准确率.实验表明,在聚类类别数给定的前提下,在标准数据集UCI上该算法有效降低离群点对K-means算法的影响,提高了聚类的精确率和稳定性.  相似文献   

2.
为了提高高维数据集合离群数据挖掘效率,提出了一种基于流形学习的离群点检测算法。局部线性嵌入( locally linear embedding, LLE)算法是流形学习中有效的非线性降维方法,它的优势在于只定义唯一的参数,即邻域数。根据LLE算法的思想寻找样本数据的内在嵌入分布,并通过邻域数选取和降维后数据点之间的距离调整,提高了数据集中离群点发现效率,同时利用离群点权值判别式进行权值数据判定,根据权值的大小标识出数据集中的离群点,仿真实验的结果表明了该方法能够有效地发现高维数据集中的离群点。与此同时,该算法具有参数估计简单、参数影响不大等优点,该算法为离群点检测问题的机器学习提供了一条新的途径。  相似文献   

3.
张哲 《科技咨询导报》2010,(6):216-216,218
对两种常用的空间离群点检测算法进行简单的介绍,并通过实验对算法进行比较,分析了这两种空间离群点检测算法的优缺点,以及导致它们差异的具体原因。这对寻找更好的空间离群点检测算法具有实用意义。  相似文献   

4.
基于离群点检测的K-means算法   总被引:1,自引:0,他引:1  
K-means算法以其简单、快速的特点在现实生活中得到广泛应用。然而传统K-means算法容易受到噪声的影响,导致聚类结果不稳定,聚类精度不高。针对这个问题,提出一种基于离群点检测的K-means算法,首先检测出数据集中的离群点,在选择初始种子的时候,避免选择离群点作为初始种子。然后在对非离群点进行聚类完成后,根据离群点到各个聚类的距离,将离群点划分到相应的聚类中。算法有效降低离群点对K-means算法的影响,提高聚类结果的准确率。实验表明,在聚类类别数给定的前提下,在标准数据集UCI上该算法有效降低离群点对K-means算法的影响,提高了聚类的精确率和稳定性。  相似文献   

5.
针对目前大部分离群点检测算法未考虑数据的局部信息, 导致离群点检测的准确率低问题, 提出一种新的基于聚类和局部信息的两阶段离群点检测算法. 通过定义新的局部离群因子作为判断数据对象是否为离群点的衡量标准, 改进了传统离群点检测算法的过程. 实验结果表明, 该算法在保持线性复杂度的同时, 能更准确、 有效地挖掘出数据集中的离群点.  相似文献   

6.
针对目前高维数据量急剧增加,离群点检测技术精准度低、所需内存大、检测时间长等问题,提出了基于网格划分和局部线性嵌入方法(Locally Linear Embedding, LLE)的高维数据离群点自适应检测方法.根据高维数据的空间维度进行网格划分,设定单元格邻近单元数量,降低运行开销,减少计算时间.采用局部线性嵌入方法(LLE),分析不同组合数据点的局部特性,准确描述高维数据结构,完成高维数据集预处理.采集高维数据集合中小部分重要信息,保证采集结果的准确性,利用MapReduce编程模型,将大任务划分为多个不同的小任务,展开分布式处理.通过网格密度计算离群度,提升检测效率,优先过滤空白网格单元,降低空间开销,减小所需内存,从而实现高维数据离群点自适应检测.实验结果表明:所提方法在不同数据集大小测试中,执行时间更短,检测精确度更加稳定;在维度测试中,所需内存更少.证明所提方法能够有效降低执行时间和内存,提升检测结果的精确度.  相似文献   

7.
基于nested-loop的大数据集快速离群点检测算法   总被引:1,自引:0,他引:1  
针对已有的多数离群点检测算法存在扩展性差,不能有效应用于大数据集的问题,在已有的基于距离的离群点检测算法的基础上,设计模信息表存储结构,利用向量内积不等式关系以及合理的存储分配和调度策略,提出一种高效离群点检测算法DBoda.该算法通过在预处理中存储每个点的模信息,减少点间距离的计算量,并对嵌套循环方法进行优化,进一步减少I/O的开销.理论分析和试验结果表明,所提算法具有时间消耗小和适用于处理大数据集的特点,可以有效地解决离群点检测中的算法时间复杂性和算法扩展性问题.  相似文献   

8.
一种改进的离群点检测方法   总被引:1,自引:0,他引:1  
现有的离群点检测算法运用于规模较大的数据集时,其时间效率和检测效果通常不够理想.通过对离群点分布特征的分析,在计算每个数据点到其kth最近邻对象距离的同时,结合其k最近邻的分布情况,给出一种改进的离群点度量方法.基于上述思想构造的离群点检测算法DokOF能够处理混合属性数据.实验表明,该算法具有良好的适用性和有效性.  相似文献   

9.
在数据密集型计算环境中,数据具有海量、高速变化、分布存储和异构等特征,对数据挖掘算法的设计与实现提出了新的挑战.基于MapReduce模型,提出了一种网格技术与基于LOF方法相结合的离群点挖掘算法MR_LOF.Map阶段采用网格进行数据约简,将代表点信息发送给主节点;Reduce阶段使用基于密度的离群点挖掘算法,借助网格期望值E筛选出稠密区域.该算法只需计算稀疏区域对象的LOF值,降低了算法的时间复杂度.实验结果表明,在数据密集型计算环境中,该方法能有效的对离群点进行挖掘.  相似文献   

10.
通过对当前有代表性的离群数据检测方法的分析和比较,总结了各方法的特性及优缺点.针对大数据的数据量大、维数高的特性,分析了离群点检测方法的改进策略,并以T-ODCD算法和AROD算法为例,进一步说明离群点检测改进策略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号