首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
针对基于聚类的离群点检测算法在处理高维数据流时效率和精确度低的问题,提出一种高维数据流的聚类离群点检测(CODHD-Stream)算法。该算法首先采用滑动窗口技术对数据流划分,然后通过属性约简算法对高维数据集降维;其次运用基于距离的信息熵过滤机制的 K-means 聚类算法将数据集划分成微聚类,并检测微聚类的离群点。通过实验结果分析表明:该算法可以有效提高高维数据流中离群点检测的效率和准确度。  相似文献   

2.
随着交通、网络流量监控等应用的涌现,不确定数据流频繁项集挖掘成为近年来的研究热点。通常在不确定数据流中,频繁项集所占的比例较小,导致挖掘中无效操作较多。基于这种情况,提出了一种基于预裁剪的不确定数据流频繁项集挖掘算法Prep-UF-Streaming;该算法,不仅能裁剪掉大部分非频繁项集,提高了算法的平均运行时间;而且能够检测到非频繁项集成为频繁项集的可能性,尽量不丢失频繁项集,从而尽可能地提高算法的性能。  相似文献   

3.
不确定性的出现使传统算法无法直接用于聚类不确定数据流。该文提出一种不确定数据流环境下基于密度的聚类算法,其中提出不确定度的概念以衡量不确定数据的分布信息,并在改进面向确定数据的聚类算法DENCLUE的基础上,提出一种可处理数据不确定度的UDENCLUE算法,以降低数据的不确定性对聚类结果产生的影响;提出滑动窗口下基于密度的不确定数据流聚类算法USDENCLUE,通过聚类特征指数直方图技术实现快速剪枝,可以高效处理噪音数据、演化数据流并生成任意形状的簇;采用真实数据集及人工合成数据集对USDENCLUE与CluStream聚类算法进行比较,实验结果表明了所提出算法的高效性和有效性。  相似文献   

4.
使用滑动窗口的统计方法进行数据流离群点检测,是一种有效的在低纬度下进行离群点查找的方法,但是该法无法处理数据密度不均匀的数据流.据此提出一种自适应的基于统计的数据流动态检测算法.首先利用局部数据欧式空间中距离的数学期望和方差找到一个合适的k阶邻域,然后对这个k阶邻域内数据点的欧式距离和进行基于统计的离群点检测,实现自动适应数据流中稀疏段和稠密段的密度变化.理论和实验结果均表明,该算法可以有效地解决数据流离群点检测问题.  相似文献   

5.
总结目前数据流在线检测算法的优缺点,提出了一种新的数据流在线检测算法—SWKLOF。该算法采用滑动时间窗口对数据流进行封装,用k-距离进行剪枝,剔除大部分正常数据,对剩余疑似异常数据采用局部离群因子LOF(local outlier factor)进一步精确筛选。理论分析和实验结果表明该算法降低了时间复杂度,提高了检测准确性。  相似文献   

6.
离群数据挖掘是数据挖掘中的重要内容.本文针对时间序列数据进行离群数据挖掘方法的研究.在引入了基于局部离群点因子的离群数据挖掘方法与时间序列上滑动窗口基础上,将二者相结合,提出了基于滑动窗口的时间序列离群数据挖掘算法,并将算法应用于海表温度数据得到海表温度的异常之处.  相似文献   

7.
采用滑动窗口技术对数据流进行近似,提出了两种数据流上的轮廓查询方法:CCS算法和PCS算法.CCS算法能够实时反映数据的变化,内存空间的利用率也较高.PCS算法则适合周期性更新的应用环境,有利于节约CPU资源.实验结果证明所采用的算法是有效的.  相似文献   

8.
离群点检测是数据挖掘领域研究的热点之一,主要目的是识别出数据集中异常但有价值的数据点. 随着数据规模不断扩大,使得处理海量数据的效率降低,随即引入分布式算法. 目前现有的分布式算法大都用于解决同构分布式的处理环境,但在实际应用中,由于参与分布式计算的处理机配置的差异,现有的分布式离群点检测算法不能很好地适用于异构分布式环境. 针对上述问题,本文提出一种面向异构分布式环境的离群点检测算法. 首先提出基于网格的动态数据划分方法(Gird-based Dynamic Data Partitioning,GDDP),充分利用各处理机的计算资源,同时根据数据点的空间位置信息进行数据划分,可有效减少网络通信. 其次基于GDDP算法,提出了异构分布式环境中并行的离群点检测算法(GDDP-based Outlier Detection Algorithm,GODA). 该算法包括2个阶段:在每个处理机本地,按照索引中数据点的顺序进行过滤,通过2次扫描得到离群点候选集;判断候选离群点需要进行网络通信的处理机,使用较低网络开销得出全局离群点. 最后,通过大量实验验证了本文提出的GDDP和GODA算法的有效性.  相似文献   

9.
张哲 《科技咨询导报》2010,(6):216-216,218
对两种常用的空间离群点检测算法进行简单的介绍,并通过实验对算法进行比较,分析了这两种空间离群点检测算法的优缺点,以及导致它们差异的具体原因。这对寻找更好的空间离群点检测算法具有实用意义。  相似文献   

10.
基于不确定数据的表示模型, 针对属性级不确定数据, 提出一种不确定数据生成算法AC UDGen(attribute level continuous uncertain data set generation algorithm). 该算法通过引入离群点检测 LOF(local outlier factor)算法, 用每个数据对象的离群因子作为参数来控制不确定数据对象的扰动范围, 可很好地满足原始数据的分布特征, 解决了目前工作中缺乏原始数据分布特征的问题. 实验结果表明, 该算法生成的不确定数据集具有更好的聚类效果, 并降低了离群点对聚类结果的影响, 使每个数据对象MBR(minimum bounding rectangle)的大小可根据自身的分布特征自适应地变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号