首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

7.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

8.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
形象、教师形象与教师形象学   总被引:2,自引:0,他引:2  
提出了教师形象及教师形象学的基本概念,论述了建立都教师学的基本框架以及教师形象学的学科性质。  相似文献   

12.
研究被动太赫兹波图像的图像分割算法. 针对被动太赫兹波图像水平和竖直方向平滑程度不同的特点,提出了一种改进的高斯-拉普拉斯算子,不同于传统高斯-拉普拉斯算子各向同性的特点,改进的算子在水平和垂直方向上对边缘具有不同的检测尺度. 实验表明,利用该算子可以将被动太赫兹波图像中的人和隐匿物品自动分割,能够准确、快速地对可疑的隐匿物品进行定位,使被动太赫兹波成像技术满足实际应用的需求.   相似文献   

13.
一种基于图像集的复杂场景分类方法   总被引:1,自引:0,他引:1  
保持局部图嵌入的流形鉴别分析方法将图像集所属子空间看作流形上的点,并使流形变换前后局部结构关系不变.然而在构造局部区域相似图矩阵时,用于描述节点局部区域范围的近邻节点个数会极大地影响算法的准确率,并会出现变换后流形的可分辨性相比变换前提升很小甚至更低的情况.针对该问题,提出了一种低秩描述下的Grassmannian流形鉴别分析方法.通过对图像集的低秩描述,流形变换中局部嵌入时仅保持同类别节点的最近邻局部结构以及所有节点间的相异类别信息,从而避免了对近邻节点个数的选择,并增强了变换后流形的可分辨性.由15类复杂自然场景和Caltech101图像数据集的实验结果表明,该方法是可行的,并且极大地提高了图像集分类的准确率.  相似文献   

14.
基于图像信息熵的四叉树检索算法   总被引:2,自引:0,他引:2  
在基于内容的图像检索系统中,图像的抽象描述和特征提取是要解文提出了一种基于图像信息熵的四叉树索引结构及检索算法,可以利用较低维数的特征实现高速有效的图像检索.该方法适用于查准率要求不高情况下的相关图像检索或大型图像库的预检索.  相似文献   

15.
一种基于图像块分割的多聚焦图像融合方法   总被引:20,自引:1,他引:20  
王宏  敬忠良  李建勋 《上海交通大学学报》2003,37(11):1743-1746,1750
针对多聚焦图像,提出了一种基于图像块分割的图像融合方法,采用块区域局部对比度将多聚焦图像分割成三部分:聚焦清晰区域、聚焦模糊区域以及两者之间的边界区域,对于清晰区域和模糊区域,直接选取清晰块区域作为融合后相应块区域;对于边界区域,建立了基于对比度的像素选取方法进行融合处理,实验对比结果表明,该方法明显优于拉普拉斯金字塔融合算法和离散小波变换融合算法。  相似文献   

16.
在讨论和分析图像形态学原理和几种基本运算的效果基础上,提出了将图像形态学技术应用到光弹应力分析中。利用VisualC 实现了必需的形态学算法,对采集到的光弹性图像进行去噪、骨架化等形态学预处理,较好地反映原光弹条纹图特征,得到了优质的条纹骨骼线,对干涉条纹的中心有较好的识别效果。确保光弹分析后续工作的进行。  相似文献   

17.
一种静止图像质量评价指标   总被引:3,自引:0,他引:3  
介绍一种新的静止图像质量评价算法,其数学模型的建立依据为:图像总的失真主要由相关损失、对比度失真和亮度损失3方面造成。该方法性能高于常用的均方误差和峰值信噪比图像质量评价方法,且简单有效。用此法对静止图像压缩中解压图像的质量进行评价,其结果与人眼的感知评价保持较好的一致。  相似文献   

18.
本文探讨了计算机图象处理过程中图象的打印机硬拷贝输出方法,通过C语言编制的软件,实现了实时输入图象在点阵式打印机上以3比特灰度级、多种不同尺寸、正反两个方向输出,获得了较好的打印效果。  相似文献   

19.
提出一种建立在HSV空间颜色分类和形态特征基础上的图像Hash方法,用于图像检索.将图像尺寸规格化,并根据HSV空间中各分量的取值范围,将像素归为11类,在各类颜色成分中提取亮度、大小、形态等特征,加权得到Hash值以构成图像库的索引表,从而实现基于内容的图像检索(content-based image retrieval,CBIR).与其他方法相比,用该方法提取的图像特征除颜色外还包含形态特征,能较好地体现图像内容.实验结果表明,该方法具有良好的性能.  相似文献   

20.
为了尽可能地恢复被损坏图像的原始场景,获得最真实的复原效果,针对大区域破损图像的修复,提出了一个基于移位参考图像的可信图像修补与基于图像本身的自修复算法相结合的图像修复方法。首先,受启于图像拼接技术,若存在可以利用的参考图像,便利用SIFT(scale invariant feature transform)算法和RANSAC(random sample consensus)算法将参考图像与目标图像进行配准并投影拼接至目标图像,完成目标图像的可信修补。然后对仍未修复的破损区域进行图像自修复,其中自修复部分采用Criminisi算法。所得到的图像修复结果真实性与可信度较高,与实际景象偏差较小,说明该方法合理可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号