首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The immune system has evolved several mechanisms that provide lymphocytes with the intelligence to ignore self proteins while attacking foreign pathogenic agents. Notably, B and T lymphocytes that encounter self antigen at either the inappropriate levels or affinity are usually instructed to perish or become anergized. However, the presence of autoimmune disease suggests that the induction of self tolerance is not foolproof. In fact, autoreactive cells are now found to be normal inhabitants of the B and T lymphocyte repertoire. This review examines how foreign peptides which resemble self proteins can elicit autoimmunity that is amplified to many sites on a target autoantigen. In particular, B lymphocytes initiated by foreign molecular mimics can process and present self peptides in the shaping of autoimmune T cell responses.  相似文献   

2.
The addition of 'fire' to the European battle repertoire resulted in the close-order drill for manoeuvres of the line. Begun in late sixteenth-century Netherlands and perfected in eighteenth-century Prussia under Frederick the Great, the drill's precision marching evolved into a military science which conceived what infantry acquired through rigorous training as a lawful 'second nature' of men. In contrast, the liberal Webers' 1836 locomotion research orientation was, as was that of French skirmishing, one of natural self-regulation. Later Prussian military science, restored in Imperial Germany, was merged into locomotion science.  相似文献   

3.
Cellular senescence, a permanent state of cell cycle arrest accompanied by a complex phenotype, is an essential mechanism that limits tumorigenesis and tissue damage. In physiological conditions, senescent cells can be removed by the immune system, facilitating tumor suppression and wound healing. However, as we age, senescent cells accumulate in tissues, either because an aging immune system fails to remove them, the rate of senescent cell formation is elevated, or both. If senescent cells persist in tissues, they have the potential to paradoxically promote pathological conditions. Cellular senescence is associated with an enhanced pro-survival phenotype, which most likely promotes persistence of senescent cells in vivo. This phenotype may have evolved to favor facilitation of a short-term wound healing, followed by the elimination of senescent cells by the immune system. In this review, we provide a perspective on the triggers, mechanisms and physiological as well as pathological consequences of senescent cells.  相似文献   

4.
While the biological effects of high-dose-ionizing radiation on human health are well characterized, the consequences of low-dose radiation exposure remain poorly defined, even though they are of major importance for radiological protection. Lymphocytes are very radiosensitive, and radiation-induced health effects may result from immune cell loss and/or immune system impairment. To decipher the mechanisms of effects of low doses, we analyzed the modulation of the T-cell receptor gene repertoire in mice exposed to a single low (0.1 Gy) or high (1 Gy) dose of radiation. High-throughput T-cell receptor gene profiling was used to visualize T-lymphocyte dynamics over time in control and irradiated mice. Radiation exposure induces “aging-like” effects on the T-cell receptor gene repertoire, detectable as early as 1 month post-exposure and for at least 6 months. Surprisingly, these effects are more pronounced in animals exposed to 0.1 Gy than to 1 Gy, where partial correction occurs over time. Importantly, we found that low-dose radiation effects are partially due to the hematopoietic stem cell impairment. Collectively, our findings show that acute low-dose radiation exposure specifically results in long-term alterations of the T-lymphocyte repertoire.  相似文献   

5.
Gamma delta (γ δ) T cells are among the least understood components of the immune system. While these cells appear to contribute uniquely to host immune competence, defining their functions in the context of host biology and pathology has been difficult. This is largely because it is unclear what antigens the γ δ T cell receptor repertoire is directed against. During the past year, there have been noteworthy advances in this area. Their significance in the context of γ δ T cell biology is discussed. Received 19 January 2006; received after revision 16 March 2006; accepted 26 May 2006  相似文献   

6.
The human intestinal mucosa is constantly exposed to commensal microbiota. Since the gut microbiota is beneficial to the host, hosts have evolved intestine-specific immune systems to co-exist with the microbiota. On the other hand, the intestinal microbiota actively regulates the host’s immune system, and recent studies have revealed that specific commensal bacterial species induce the accumulation of specific immune cell populations. For instance, segmented filamentous bacteria and Clostridium species belonging to clusters XIVa and IV induce the accumulation of Th17 cells in the small intestine and Foxp3+ regulatory T cells in the large intestine, respectively. The immune cells induced by the gut microbiota likely contribute to intestinal homeostasis and influence systemic immunity in the host.  相似文献   

7.
Infection of bacteria triggers innate immune defense reactions in Drosophila. So far, the only bacterial component known to be recognized by the insect innate immune system is peptidoglycan, one of the most abundant constituents of the bacterial cell wall. Insects use peptidoglycan recognition proteins to detect peptidoglycan and to activate innate immune responses. Such specialized peptidoglycan receptors appear to have evolved from phage enzymes that hydrolyze bacterial cell walls. They are able to bind specific peptidoglycan molecules with distinct chemical moieties and activate innate immune pathways by interacting with other signaling proteins. Recent X-ray crystallographic studies of the peptidoglycan recognition proteins LCa, and LCx bound to peptidoglycan have provided structural insights into recognition of peptidoglycan and activation of innate immunity in insects. Received 28 December 2006; received after revision 2 February 2007; accepted 21 February 2007  相似文献   

8.
The thymus is central to the establishment of a functioning immune system. Here is the place where T cells mature from hematopoietic progenitors, driven by mutual interactions of stromal cells and the developing thymocytes. As a result, different types of T cells are generated, all of which have been carefully selected for the ability to act in host defense towards non-self and against the potential to mount pathogenic self-reactive autoimmune responses. In this review we summarize our present knowlege on the lineage decisions taking place during this development, the selection processes responsible for shaping the T cell antigen-receptor repertoire, the interactions with the stromal components and the signal transduction pathways which transform the interactions with the thymic microenvironment into cellular responses of survival, proliferation, differentiation and, importantly, also of cell death. Received 12 June 2003; received after revision 22 July 2003; accepted 28 July 2003  相似文献   

9.
Recent findings suggest that lymphocyte survival is a continuous active process and support the role of B cell receptor engagement in B cell survival. In this context the conflict of survival interests between the diverse B cells gives rise to a pattern of interactions which mimics the behavior of complex ecological systems. In response to competition lymphocytes modify their survival requirements and diverge to occupy different immunological niches through differentiation. Thus naive and memory-activated B cell populations show independent homeostatic regulation. We discuss how niche differentiation allows the coexistence of different cell types and guarantees both repertoire diversity and efficient immune responses.  相似文献   

10.
Immunological memory allows for rapid and effective protective immunity to previously encountered pathogens. New insights in understanding specific memory differentiation and function have now indicated that in addition to providing enhanced immunity, an important purpose of immunological memory is to provide immediate protection at all sites of the body, including non-lymphoid tissues. Effector memory CD8 T cells have the capacity to reside long-term at epithelial surfaces, where they allow for rapid containment of the invading pathogens at the local entry site and prevent systemic spreading and excessive immune responses. The accumulation of tissue-specific memory T cell subsets, together with cross-reactivity of these antigen-experienced T cells even to unrelated pathogens, provides flexibility and expansion of their specificity repertoire that over time greatly surpasses that of the declining na?ve T cell populations. This review will discuss new insights into T cell memory. We will focus in particular on the generation and function of effector memory CD8 T cells at the intestinal mucosa, which represents one of the largest entry sites for pathogens.  相似文献   

11.
A challenging task for the adaptive immune system of vertebrates is to identify and eliminate intracellular antigens. Therefore a highly specialized antigen presentation machinery has evolved to display fragments of newly synthesized proteins to effector cells of the immune system at the cell surface. After proteasomal degradation of unwanted proteins or defective ribosome products, resulting peptides are translocated into the endoplasmic reticulum by the transporter associated with antigen processing and loaded onto major histocompatibility complex (MHC) class I molecules. Peptide-MHC I complexes are transported via the secretory pathway to the cell surface where they are then inspected by cytotoxic T lymphocytes, which can trigger an immune response. This review summarizes the current view of the intracellular machinery of antigen processing and of viral immune escape mechanisms to circumvent destruction by the host. Received 4 October 2005; received after revision 19 November 2005; accepted 24 November 2005  相似文献   

12.
B cells express immunoglobulins on their surface where they serve as antigen receptors. When secreted as antibodies, the same molecules are key elements of the humoral immune response against pathogens such as viruses. Although most antibodies are restricted to binding a specific antigen, some are polyreactive and have the ability to bind to several different ligands, usually with low affinity. Highly polyreactive antibodies are removed from the repertoire during B-cell development by physiologic tolerance mechanisms including deletion and receptor editing. However, a low level of antibody polyreactivity is tolerated and can confer additional binding properties to pathogen-specific antibodies. For example, high-affinity human antibodies to HIV are frequently polyreactive. Here we review the evidence suggesting that in the case of some pathogens like HIV, polyreactivity may confer a selective advantage to pathogen-specific antibodies.  相似文献   

13.
Macrophages play an essential role in the immune system by ingesting and degrading invading pathogens, initiating an inflammatory response and instructing adaptive immune cells, and resolving inflammation to restore homeostasis. More interesting is the fact that some bacteria have evolved to use macrophages as a natural habitat and tools of spread in the host, e.g., Mycobacterium tuberculosis (Mtb) and some non-tuberculous mycobacteria (NTM). Mtb is considered one of humanity’s most successful pathogens and is the causal agent of tuberculosis, while NTMs cause opportunistic infections all of which are of significant public health concern. Here, we describe mechanisms by which intracellular pathogens, with an emphasis on mycobacteria, manipulate macrophage functions to circumvent killing and live inside these cells even under considerable immunological pressure. Such macrophage functions include the selective evasion or engagement of pattern recognition receptors, production of cytokines, reactive oxygen and nitrogen species, phagosome maturation, as well as other killing mechanisms like autophagy and cell death. A clear understanding of host responses elicited by a specific pathogen and strategies employed by the microbe to evade or exploit these is of significant importance for the development of effective vaccines and targeted immunotherapy against persistent intracellular infections like tuberculosis.  相似文献   

14.
Combinatorial protein engineering for selection of proteins with novel functions, such as enzymes and affinity reagents, is an important tool in biotechnology, drug discovery, and other biochemical fields. Bacterial display is an emerging technology for isolation of new affinity proteins from such combinatorial libraries. Cells have certain properties that are attractive for directed evolution purposes, in particular the option to use quantitative flow-cytometric cell sorting for selection of binders. Here, an immune library of around 107 camelid single-domain antibody fragments (Nanobodies) was displayed on both the Gram-positive bacterium Staphylococcus carnosus and on phage. As demonstrated for the first time, the antibody repertoire was found to be well expressed on the bacterial surface and flow-cytometric sorting yielded a number of Nanobodies with subnanomolar affinity for the target protein, green fluorescent protein (GFP). Interestingly, the staphylococcal output repertoire and the binders from the phage display selection contained two slightly different sets of clones, containing both unique as well as several similar variants. All of the Nanobodies from the staphylococcal selection were also shown to enhance the fluorescence of GFP upon binding, potentially due to the fluorescence-based sorting principle. Our study highlights the impact of the chosen display technology on the variety of selected binders and thus the value of having alternative methods available, and demonstrates in addition that the staphylococcal system is suitable for generation of high-affinity antibody fragments.  相似文献   

15.
CD4 and CD8 T lymphocyte interplay in controlling tumor growth   总被引:1,自引:0,他引:1  
The outstanding clinical success of immune checkpoint blockade has revived the interest in underlying mechanisms of the immune system that are capable of eliminating tumors even in advanced stages. In this scenario, CD4 and CD8 T cell responses are part of the cancer immune cycle and both populations significantly influence the clinical outcome. In general, the immune system has evolved several mechanisms to protect the host against cancer. Each of them has to be undermined or evaded during cancer development to enable tumor outgrowth. In this review, we give an overview of T lymphocyte-driven control of tumor growth and discuss the involved tumor-suppressive mechanisms of the immune system, such as senescence surveillance, cancer immunosurveillance, and cancer immunoediting with respect to recent clinical developments of immunotherapies. The main focus is on the currently existing knowledge about the CD4 and CD8 T lymphocyte interplay that mediates the control of tumor growth.  相似文献   

16.
17.
Intercellular communications play a vital role during tissue patterning, tissue repair, and immune reactions, in homeostasis as well as in disease. Exosomes are cell-derived secreted vesicles, extensively studied for their role in intercellular communication. Exosomes have the intrinsic ability to package multiple classes of proteins and nucleic acids within their lumens and on their membranes. Here, we explore the hypothesis that exosomal targeting may represent a cellular strategy that has evolved to deliver specific combinations of signals to specific target cells and influence normal or pathological processes. This review aims to evaluate the available evidence for this hypothesis and to identify open questions whose answers will illuminate our understanding and applications of exosome biology.  相似文献   

18.
The immune system has evolved to protect hosts from pathogens. T cells represent a critical component of the immune system by their engagement in host defence mechanisms against microbial infections. Our knowledge of the molecular recognition by T cells of pathogen-derived peptidic antigens that are presented by the major histocompatibility complex glycoproteins is now well established. However, lipids represent an additional, distinct chemical class of molecules that when presented by the family of CD1 antigen-presenting molecules can serve as antigens, and be recognized by specialized subsets of T cells leading to antigen-specific activation. Over the past decades, numerous CD1-presented self- and bacterial lipid-based antigens have been isolated and characterized. However, our understanding at the molecular level of T cell immunity to CD1 molecules presenting microbial lipid-based antigens is still largely unexplored. Here, we review the insights and the molecular basis underpinning the recognition of microbial lipid-based antigens by T cells.  相似文献   

19.
Lysozymes are antibacterial effectors of the innate immune system in animals that hydrolyze peptidoglycan. Bacteria have evolved protective mechanisms that contribute to lysozyme tolerance such as the production of lysozyme inhibitors, but only inhibitors of chicken (c-) and invertebrate (i-) type lysozyme have been identified. We here report the discovery of a novel Escherichia coli inhibitor specific for goose (g-) type lysozymes, which we designate PliG (periplasmic lysozyme inhibitor of g-type lysozyme). Although it does not inhibit c- or i-type lysozymes, PliG shares a structural sequence motif with the previously described PliI and MliC/PliC lysozyme inhibitor families, suggesting a common ancestry and mode of action. Deletion of pliG increased the sensitivity of E. coli to g-type lysozyme. The existence of inhibitors against all major types of animal lysozyme and their contribution to lysozyme tolerance suggest that lysozyme inhibitors may play a role in bacterial interactions with animal hosts.  相似文献   

20.
Based on the assumption that invertebrates, like vertebrates, possess factors regulating responses to infection or wounding, studies dealing with the evolution of immunity have focussed on the isolation and characterisation of putative cytokine-related molecules from invertebrates. Until recently, most of our knowledge of cytokine- and cytokine receptor-like molecules in invertebrates relies on functional assays and similarities at the physicochemical level. As such, a phylogenetic relationship between invertebrate cytokine-like molecules and vertebrate counterparts could not be convincingly demonstrated. Recent genomic sequence analyses of interleukin-1-receptor-related molecules, that is Toll-like receptors, and members of the transforming growth factor-β superfamily suggest that the innate immune system of invertebrates and vertebrates evolved independently. In addition, data from protochordates and annelids suggest that invertebrate cytokine-like molecules and vertebrate factors do not have the same evolutionary origin. We propose instead that the convergence of function of invertebrate cytokine-like molecules and vertebrate counterparts involved in innate immune defences may be based on similar lectin-like activities. Received 27 November 2000; received after revision 11 December 2000; accepted 13 December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号