首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C J Stirling  E W Hewitt 《Nature》1992,356(6369):534-537
Translocation of proteins across the endoplasmic reticulum (ER) membrane represents the first step in the eukaryotic secretory pathway. In mammalian cells, the targeting of secretory and membrane protein precursors to the ER is mediated by signal recognition particle (SRP), a cytosolic ribonucleoprotein complex comprising a molecule of 7SL RNA and six polypeptide subunits (relative molecular masses 9, 14, 19, 54, 68 and 72K). In Saccharomyces cerevisiae, a homologue of the 54K subunit (SRP54) co-purifies with a small cytoplasmic RNA, scR1 (refs 4, 5). Genetic data indicate that SRP54 and scR1 are involved in translocation in vivo, suggesting the existence of an SRP-like activity in yeast. Whether this activity requires additional components similar to those found in mammalian SRP is not known. We have recently reported a genetic selection that led to the isolation of a yeast mutant, sec65-1, which is conditionally defective in the insertion of integral membrane proteins into the ER. Here we report the cloning and sequencing of the SEC65 gene, which encodes a 31.2K protein with significant sequence similarity to the 19K subunit of human SRP (SRP19). We also report the cloning of a multicopy suppressor of sec65-1, and its identification as the previously defined SRP54 gene, providing genetic evidence for an interaction between these gene products in vivo.  相似文献   

2.
Hainzl T  Huang S  Sauer-Eriksson AE 《Nature》2002,417(6890):767-771
The signal recognition particle (SRP) is a phylogenetically conserved ribonucleoprotein. It associates with ribosomes to mediate co-translational targeting of membrane and secretory proteins to biological membranes. In mammalian cells, the SRP consists of a 7S RNA and six protein components. The S domain of SRP comprises the 7S.S part of RNA bound to SRP19, SRP54 and the SRP68/72 heterodimer; SRP54 has the main role in recognizing signal sequences of nascent polypeptide chains and docking SRP to its receptor. During assembly of the SRP, binding of SRP19 precedes and promotes the association of SRP54 (refs 4, 5). Here we report the crystal structure at 2.3 A resolution of the complex formed between 7S.S RNA and SRP19 in the archaeon Methanococcus jannaschii. SRP19 bridges the tips of helices 6 and 8 of 7S.S RNA by forming an extensive network of direct protein RNA interactions. Helices 6 and 8 pack side by side; tertiary RNA interactions, which also involve the strictly conserved tetraloop bases, stabilize helix 8 in a conformation competent for SRP54 binding. The structure explains the role of SRP19 and provides a molecular framework for SRP54 binding and SRP assembly in Eukarya and Archaea.  相似文献   

3.
J Luirink  S High  H Wood  A Giner  D Tollervey  B Dobberstein 《Nature》1992,359(6397):741-743
Hydrophobic signal-sequences direct the transfer of secretory proteins across the inner membrane of prokaryotes and the endoplasmic reticulum membranes of eukaryotes. In mammalian cells, signal-sequences are recognized by the 54K protein (M(r) 54,000) of the signal recognition particle (SRP) which is believed to hold the nascent chain in a translocation-competent conformation until it contacts the endoplasmic reticulum membrane. The SRP consists of a 7S RNA and six different polypeptides. The 7S RNA and the 54K signal-sequence-binding protein (SRP54) of mammalian SRP exhibit strong sequence similarity to the 4.5S RNA and P48 protein (Ffh) of Escherichia coli which form a ribonucleoprotein particle. Depletion of 4.5S RNA or overproduction of P48 causes the accumulation of the beta-lactamase precursor, although not of other secretory proteins. Whether 4.5S RNA and P48 are part of an SRP-like complex with a role in protein export is controversial. Here we show that the P48/4.5S RNA ribonucleoprotein complex interacts specifically with the signal sequence of a nascent secretory protein and therefore is a signal recognition particle.  相似文献   

4.
Halic M  Becker T  Pool MR  Spahn CM  Grassucci RA  Frank J  Beckmann R 《Nature》2004,427(6977):808-814
Cotranslational translocation of proteins across or into membranes is a vital process in all kingdoms of life. It requires that the translating ribosome be targeted to the membrane by the signal recognition particle (SRP), an evolutionarily conserved ribonucleoprotein particle. SRP recognizes signal sequences of nascent protein chains emerging from the ribosome. Subsequent binding of SRP leads to a pause in peptide elongation and to the ribosome docking to the membrane-bound SRP receptor. Here we present the structure of a targeting complex consisting of mammalian SRP bound to an active 80S ribosome carrying a signal sequence. This structure, solved to 12 A by cryo-electron microscopy, enables us to generate a molecular model of SRP in its functional conformation. The model shows how the S domain of SRP contacts the large ribosomal subunit at the nascent chain exit site to bind the signal sequence, and that the Alu domain reaches into the elongation-factor-binding site of the ribosome, explaining its elongation arrest activity.  相似文献   

5.
K R?misch  J Webb  J Herz  S Prehn  R Frank  M Vingron  B Dobberstein 《Nature》1989,340(6233):478-482
Most proteins exported from mammalian cells contain a signal sequence which mediates targeting to and insertion into the membrane of the endoplasmic reticulum (ER). Involved in this process are the signal-recognition particle (SRP) and docking protein (DP), the receptor for SRP in the ER membrane. SRP interacts with the signal sequence on nascent polypeptide chains and retards their further elongation, which resumes only after interaction of the arrested ribosomal complex with the docking protein. SRP is a ribonucleoprotein particle comprising a 7S RNA and six polypeptides with relative molecular masses (Mr) of 9,000 (9K) 14K, 19K, 54K, 68K and 72K (ref. 1). The 9K and 14K proteins are essential for elongation arrest and the 68K-72K heterodimer is required for docking to the ER membrane. The 54K protein binds to the signal sequence when it emerges from the ribosome. Docking protein consists of two polypeptides, a 72K alpha-subunit (DP alpha) and a 30K beta-subunit (DP beta). No components structurally homologous to SRP and docking protein have yet been found in yeast or Escherichia coli. To understand the molecular nature of the interaction between the signal sequence and its receptor(s) we have characterized a complementary DNA coding for the 54K protein of SRP. Significant sequence homology was found to part of DP alpha and two E. coli proteins of unknown function. The homologous region includes a putative GTP-binding domain.  相似文献   

6.
G J Phillips  T J Silhavy 《Nature》1992,359(6397):744-746
Homologues of the gene encoding the 54K (M(r) 54,000) subunit of the mammalian signal recognition particle have been identified in different organisms. The Escherichia coli homologue, termed ffh (for fifty-four homologue), specifies a protein (Ffh) that shares many properties with its eukaryotic counterpart, including association with mammalian 7S RNA and the ability to bind signal sequences specifically. Ffh also associates with E. coli 4.5S RNA, showing that it can form a ribonucleoprotein complex in prokaryotes. These results are intriguing because extensive genetic and biochemical characterization of E. coli failed to identify a signal recognition particle-like mechanism for protein export. Here we address this issue directly by construction of a strain in which ffh expression is arabinose-dependent. Results of depletion experiments indicate that Ffh is important in protein translocation.  相似文献   

7.
Protein targeting to the endoplasmic reticulum in mammalian cells is catalysed by signal recognition particle (SRP). Cross-linking experiments have shown that the subunit of relative molecular mass 54,000 (Mr 54K; SRP54) interacts directly with signal sequences as they emerge from the ribosome. Here we present the sequence of a complementary DNA clone of SRP54 which predicts a protein that contains a putative GTP-binding domain and an unusually methionine-rich domain. The properties of this latter domain suggest that it contains the signal sequence binding site. A previously uncharacterized Escherichia coli protein has strong homology to both domains. Closely homologous GTP-binding domains are also found in the alpha-subunit of the SRP receptor (SR alpha, docking protein) in the endoplasmic reticulum membrane and in a second E. coli protein, ftsY, which resembles SR alpha. Recent work has shown that SR alpha is a GTP-binding protein and that GTP is required for the release of SRP from the signal sequence and the ribosome on targeting to the endoplasmic reticulum membrane. We propose that SRP54 and SR alpha use GTP in sequential steps of the targeting reaction and that essential features of such a pathway are conserved from bacteria to mammals.  相似文献   

8.
9.
An essential role for a phospholipid transfer protein in yeast Golgi function   总被引:51,自引:0,他引:51  
V A Bankaitis  J R Aitken  A E Cleves  W Dowhan 《Nature》1990,347(6293):561-562
Progression of proteins through the secretory pathway of eukaryotic cells involves a continuous rearrangement of macromolecular structures made up of proteins and phospholipids. The protein SEC14p is essential for transport of proteins from the yeast Golgi complex. Independent characterization of the SEC14 gene and the PIT1 gene, which encodes a phosphatidylinositol/phosphatidylcholine transfer protein in yeast, indicated that these two genes are identical. Phospholipid transfer proteins are a class of cytosolic proteins that are ubiquitous among eukaryotic cells and are distinguished by their ability to catalyse the exchange of phospholipids between membranes in vitro. We show here that the SEC14 and PIT1 genes are indeed identical and that the growth phenotype of a sec14-1ts mutant extends to the inability of its transfer protein to effect phospholipid transfer in vitro. These results therefore establish for the first time an in vivo function for a phospholipid transfer protein, namely a role in the compartment-specific stimulation of protein secretion.  相似文献   

10.
M Hosobuchi  T Kreis  R Schekman 《Nature》1992,360(6404):603-605
Non-clathrin coated vesicles have been implicated in early steps of intercompartmental transport. A distinct set of coat proteins are peripherally associated with the exterior of purified mammalian intra-Golgi transport vesicles. The 'coatomer', a cytosolic complex containing a similar subunit composition to and sharing at least one subunit (beta-COP) with the coat found on vesicles, has been postulated to be the precursor of this non-clathrin coat. Here we describe the characterization of SEC21, an essential gene required for protein transport from the endoplasmic reticulum to the Golgi in the yeast Saccharomyces cerevisiae. The 105K product of this gene, Sec21p, participates in a cytosolic complex that we show to be a yeast homologue of the mammalian coatomer. These observations demonstrate that a non-clathrin coat protein plays an essential role in intercompartmental transport.  相似文献   

11.
Frank J  Agrawal RK 《Nature》2000,406(6793):318-322
The ribosome is a macromolecular assembly that is responsible for protein biosynthesis following genetic instructions in all organisms. It is composed of two unequal subunits: the smaller subunit binds messenger RNA and the anticodon end of transfer RNAs, and helps to decode the mRNA; and the larger subunit interacts with the amino-acid-carrying end of tRNAs and catalyses the formation of the peptide bonds. After peptide-bond formation, elongation factor G (EF-G) binds to the ribosome, triggering the translocation of peptidyl-tRNA from its aminoacyl site to the peptidyl site, and movement of mRNA by one codon. Here we analyse three-dimensional cryo-electron microscopy maps of the Escherichia coli 70S ribosome in various functional states, and show that both EF-G binding and subsequent GTP hydrolysis lead to ratchet-like rotations of the small 30S subunit relative to the large 50S subunit. Furthermore, our finding indicates a two-step mechanism of translocation: first, relative rotation of the subunits and opening of the mRNA channel following binding of GTP to EF-G; and second, advance of the mRNA/(tRNA)2 complex in the direction of the rotation of the 30S subunit, following GTP hydrolysis.  相似文献   

12.
Weichenrieder O  Wild K  Strub K  Cusack S 《Nature》2000,408(6809):167-173
The Alu domain of the mammalian signal recognition particle (SRP) comprises the heterodimer of proteins SRP9 and SRP14 bound to the 5' and 3' terminal sequences of SRP RNA. It retards the ribosomal elongation of signal-peptide-containing proteins before their engagement with the translocation machinery in the endoplasmic reticulum. Here we report two crystal structures of the heterodimer SRP9/14 bound either to the 5' domain or to a construct containing both 5' and 3' domains. We present a model of the complete Alu domain that is consistent with extensive biochemical data. SRP9/14 binds strongly to the conserved core of the 5' domain, which forms a U-turn connecting two helical stacks. Reversible docking of the more weakly bound 3' domain might be functionally important in the mechanism of translational regulation. The Alu domain structure is probably conserved in other cytoplasmic ribonucleoprotein particles and retroposition intermediates containing SRP9/14-bound RNAs transcribed from Alu repeats or related elements in genomic DNA.  相似文献   

13.
YidC mediates membrane protein insertion in bacteria   总被引:13,自引:0,他引:13  
The basic machinery for the translocation of proteins into or across membranes is remarkably conserved from Escherichia coli to humans. In eukaryotes, proteins are inserted into the endoplasmic reticulum using the signal recognition particle (SRP) and the SRP receptor, as well as the integral membrane Sec61 trimeric complex (composed of alpha, beta and gamma subunits). In bacteria, most proteins are inserted by a related pathway that includes the SRP homologue Ffh, the SRP receptor FtsY, and the SecYEG trimeric complex, where Y and E are related to the Sec61 alpha and gamma subunits, respectively. Proteins in bacteria that exhibit no dependence on the Sec translocase were previously thought to insert into the membrane directly without the aid of a protein machinery. Here we show that membrane insertion of two Sec-independent proteins requires YidC. YidC is essential for E. coli viability and homologues are present in mitochondria and chloroplasts. Depletion of YidC also interferes with insertion of Sec-dependent membrane proteins, but it has only a minor effect on the export of secretory proteins. These results provide evidence for an additional component of the translocation machinery that is specialized for the integration of membrane proteins.  相似文献   

14.
Secretory-protein translocation into the endoplasmic reticulum (ER) is thought to be catalysed by integral membrane proteins. Genetic selections uncovered three Saccharomyces cerevisiae genes (SEC61, SEC62 and SEC63), mutations in which block import of precursor proteins into the ER lumen in vivo and in vitro. The DNA sequences of SEC62 and SEC63 predict multispanning membrane proteins, and biochemical characterization of the SEC62 protein (Sec62) confirms that it is an integral ER membrane protein. Here we show that Sec61, Sec62 and Sec63 are assembled with two additional proteins into a multisubunit membrane-associated complex. These results confirm previous predictions, based upon genetic interactions between the SEC genes, that Sec61, Sec62 and Sec63 act together to facilitate protein translocation into the ER.  相似文献   

15.
A signal sequence receptor in the endoplasmic reticulum membrane   总被引:3,自引:0,他引:3  
Protein translocation across the endoplasmic reticulum (ER) membrane is triggered at several stages by information contained in the signal sequence. Initially, the signal sequence of a nascent secretory protein upon emergence from the ribosome is recognized by a polypeptide of relative molecular mass 54,000 (Mr54K) which is part of the signal recognition particle (SRP). Binding of SRP may induce a site-specific elongation arrest of translation in vitro. Attachment of the arrested translation complex to the ER membrane is mediated by the SRP-receptor (docking protein) and is accompanied by displacement of the SRP from both the ribosome and the signal sequence. We have investigated the fate of the signal sequence following the disengagement of SRP and its receptor by a crosslinking approach. We report here that the signal sequence of nascent preprolactin, after its release from the SRP, interacts with a newly discovered component, a signal sequence receptor (SSR), which is an integral, glycosylated protein of the rough ER membrane (Mr approximately 35K).  相似文献   

16.
J P McGrath  A Varshavsky 《Nature》1989,340(6232):400-404
Mammalian tumours displaying multidrug resistance overexpress a plasma membrane protein (P-glycoprotein), which is encoded by the MDR1 gene and apparently functions as an energy-dependent drug efflux pump. Tissue-specific expression of MDR1 and other members of the MDR gene family has been observed in normal cells, suggesting a role for P-glycoproteins in secretion. We have isolated a gene from the yeast Saccharomyces cerevisiae that encodes a protein very similar to mammalian P-glycoproteins. Deletion of this gene resulted in sterility of MATa, but not of MAT alpha cells. Subsequent analysis revealed that the yeast P-glycoprotein is the product of the STE6 gene, a locus previously shown to be required in MATa cells for production of a-factor pheromone. Our findings suggest that the STE6 protein functions to export the hydrophobic a-factor lipopeptide in a manner analogous to the efflux of hydrophobic cytotoxic drugs catalysed by the related mammalian P-glycoprotein. Thus, the evolutionarily conserved family of MDR-like genes, including the hlyB gene of Escherichia coli and the STE6 gene of S. cerevisiae, encodes components of secretory pathways distinct from the classical, signal sequence-dependent protein translocation system.  相似文献   

17.
Schäfer T  Maco B  Petfalski E  Tollervey D  Böttcher B  Aebi U  Hurt E 《Nature》2006,441(7093):651-655
The formation of eukaryotic ribosomes is a multistep process that takes place successively in the nucleolar, nucleoplasmic and cytoplasmic compartments. Along this pathway, multiple pre-ribosomal particles are generated, which transiently associate with numerous non-ribosomal factors before mature 60S and 40S subunits are formed. However, most mechanistic details of ribosome biogenesis are still unknown. Here we identify a maturation step of the yeast pre-40S subunit that is regulated by the protein kinase Hrr25 and involves ribosomal protein Rps3. A high salt concentration releases Rps3 from isolated pre-40S particles but not from mature 40S subunits. Electron microscopy indicates that pre-40S particles lack a structural landmark present in mature 40S subunits, the 'beak'. The beak is formed by the protrusion of 18S ribosomal RNA helix 33, which is in close vicinity to Rps3. Two protein kinases Hrr25 and Rio2 are associated with pre-40S particles. Hrr25 phosphorylates Rps3 and the 40S synthesis factor Enp1. Phosphorylated Rsp3 and Enp1 readily dissociate from the pre-ribosome, whereas subsequent dephosphorylation induces formation of the beak structure and salt-resistant integration of Rps3 into the 40S subunit. In vivo depletion of Hrr25 inhibits growth and leads to the accumulation of immature 40S subunits that contain unstably bound Rps3. We conclude that the kinase activity of Hrr25 regulates the maturation of 40S ribosomal subunits.  相似文献   

18.
E C Wiener  W R Loewenstein 《Nature》1983,305(5933):433-435
The cell-to-cell permeability of the junctions of various cultured mammalian cell types depends on the concentration of intracellular cyclic AMP [( cAMP]i). The permeability rises when the cells are supplied with exogenous cyclic AMP or when their cyclic AMP synthesis is stimulated with choleragen or hormones; it falls when [cAMP]i is lowered by application of serum or due to increase in cell density. The rise and fall in permeability take several hours to develop (the rise is protein synthesis-dependent) and they occur concurrently with the rise and fall in the number of intramembrane particles of the gap junctions, which probably embody the cell-to-cell channels. Is this permeability regulation mediated by phosphorylating protein kinase? In many eukaryotes, the cyclic AMP receptor is a protein kinase consisting of a pair of regulatory subunits and a pair of catalytic subunits. The latter dissociate from the holoenzyme as the cyclic AMP binds to the regulatory subunits and, in this dissociated form, catalyse the phosphorylation of the target. The regulatory subunit occurs in two isoenzyme forms, I and II. The catalytic subunit seems invariant; subunits from different isoenzymes can substitute for each other. We show here that a mutant cell lacking the isoenzyme I is deficient in permeable junctions, and that this junctional defect is corrected when the mutant is supplied with exogenous catalytic subunit.  相似文献   

19.
20.
Hydrophobic signal sequences direct the translocation of nascent secretory proteins and many membrane proteins across the membrane of the endoplasmic reticulum. Initiation of this process involves the signal recognition particle (SRP), which consists of six polypeptide chains and a 7S RNA and interacts with ribosomes carrying nascent secretory polypeptide chains. In the case of aminoterminal, cleavable signal sequences, in the absence of microsomal membranes it exerts a site-specific translational arrest in vitro. The size of the arrested fragment (60-70 amino-acid residues) suggests that elongation stops when the signal sequence has emerged fully from the ribosome. However, a direct interaction between the signal sequence and SRP has not previously been demonstrated and has even been questioned recently. We now show for the first time a direct interaction between the signal sequence of a secretory protein and a component of SRP, the 45K polypeptide (relative molecular mass (Mr) 54,000). This was achieved by means of a new method of affinity labelling which involves the translational incorporation of an amino acid, carrying a photoreactive group, into nascent polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号