首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
徐杨  王晋军 《中国科学(E辑)》2013,(11):1177-1185
旋涡是流体力学中极其重要的流动结构之一,人们对旋涡的研究已经有超过一百年的历史.近年来,涡环与固体壁面的相互作用引起了人们的广泛关注.这不仅因为旋涡与壁面的相互作用在工程中很常见,更重要的是这有助于人们进一步理解旋涡与边界层相互作用的机理.分别对涡环撞壁后涡结构的演化、涡环的周向不稳定性、合成射流涡环撞壁、涡环的压缩性对涡环撞击固体壁面的影响及涡环与可穿透壁面的相互作用等方面进行了回顾与总结,并指出了存在的问题及今后的研究方向.  相似文献   

2.
通过水槽氢气泡流动显示和PIV实验研究了圆柱尾迹与平板前缘发生直接撞击后平板边界层旁路转捩特性,包括边界层旁路转捩前期拟序结构演化及其对流场统计特性影响.结果表明,尾迹撞击平板后能在平板上表面近壁区生成尺度较小展向涡;这些展向涡或者是尾迹涡被平板前缘切割后在近壁区残留部分,或者是由过前缘尾迹涡所诱生成.近壁区展向涡生成使边界层内流向速度脉动最大值在早期即出现快速增长.另一方面,尾迹对平板撞击作用主要体现在圆柱尾迹中发辫涡结构在流经平板前缘时被撕裂,受RDT机制作用在流向上被迅速拉伸形成近壁区流向涡.其后取代展向涡与条带一起成为近壁区主要流动结构,使流向速度脉动最大值出现二次增长.实验中转捩前期近壁区流体同时感受二维动和三维动,使转捩进程相比于尾迹与边界层不发生直接撞击时更加快速.  相似文献   

3.
采用具有QUICK差分格式的SIMPLE算法对底部加热长方体腔内空气的自然对流进行了实验研究和数值计算.1)当四周壁面绝热时,腔内流体形成平行于短轴方向的多个长条状涡卷,而平行于长轴方向没有形成涡卷.当Rayleigh数较小时,腔内流动表现出明显的二维特性,沿短轴各个截面的涡卷流动基本一致,三维模型平行于短轴的各截面平均Nusselt数除了边壁处差别较大,中间大部分区域均与二维模型平均Nusselt数比较接近,腔内的空气流动在长轴方向除了边壁附近差别较大,中间大部分区域均呈现明显的二维特性,二维与三维模型计算结果一致,且与实验结果吻合.随着Rayleigh数的增加,涡卷数量与形状都会发生改变,在腔内出现多边形的涡卷,腔内的流动表现出明显的三维特性,此时采用三维模型才能取得与实验一致的计算结果.2)侧壁绝热或者传热量较小时,长高比为16时,三维模型计算得到与实验一致的结果,形成平行于短轴的10个长条状涡卷.当侧壁面有传热时,方腔内流动形成了平行于长轴方向的涡卷,并且热流方向相反时涡卷的旋转方向也相反.3)底部加热长方体腔内空气的自然对流换热,低Rayleigh数时流动和换热处于稳态,当Rayleigh数超过某一临界值时,流动和换热就会发生非线性振荡.随着Rayleigh数的增加,流动的情况基本分成四个区域:稳定区域、单倍周期区域、多倍周期区域和混沌区域.  相似文献   

4.
采用激光全息干涉照相技术和烟可视化方法,对底部加热长方体腔内空气自然对流的流动和换热的流场、温度场、三维特性及白维持振荡现象进行实验研究.通过仪表校核与误差分析,验证了恒温壁面均温性、激光干涉测量精度,并且得出如下实验结果:1)随着尺日数的增加,流动开始表现得不稳定,等温线也发生扭曲.当Ra数达到12500时,出现涡卷消融的现象,当Ra数超到18500时,不仅沿短轴方向出现涡卷,而且沿长轴方向也开始出现涡卷,上升的气流向四周降落,呈现羽毛状,流动由二维特性开始向三维特性转变.2)通过实验观察发现,在Ra数比较小的情况下,流动经过一系列变化过程之后,最后稳定在某一状态;随着R口数的增加,流动变得越来越快,越来越趋于不稳定,当超过某一临界值Rac=30500时,流动表现的不稳定,流场随时间不断变化,开始进入到非线性状态.3)当侧壁面向外漏热时,腔内流体会形成平行于长轴方向的两个长条状涡卷,涡卷从中间位置上升,从壁面两侧下降,并且实验过程中会出现三个涡卷的消融状态.  相似文献   

5.
严重分离流动非定常效应是造成现代飞行器发生抖振的主要因素,因此,准确模拟飞行器分离流动是开展飞行器抖振研究的基础.本文在综合考虑现代计算机资源以及分离流流动模型可信度的基础上,建立了基于MDDES(Modified Delayed Detached Eddy Simulation)的分离流非定常数值模拟方法,通过对典型的战斗机大攻角分离流模拟计算,对计算方法进行了验证.在此基础上,综合利用RBF径向基函数技术与无限插值方法建立高效的、鲁棒性强的动网格技术,结合模态空间下结构动力学方程,建立了飞机气动/结构耦合抖振数值模拟平台,对某战斗机大攻角下边条涡干扰引起的垂尾抖振问题开展研究.数值结果显示:通过对流场中涡破裂位置的压力脉动的时域响应进行的频谱分析表明,不同尺度的涡结构脉动频率覆盖了垂尾的结构固有模态频率,相比较雷诺平均Navier-Stokes方程,MDDES方法能够分辨出更细致的、更高频率的小尺度涡结构;与颤振明显的区别,各阶模态位移加速度响应由自身模态所主导,一阶弯曲与一阶扭转模态存在强烈的耦合,使结构产生加速度,承受较大的惯性力载荷冲击,是引起结构疲劳的主要因素,验证了所采用数值手段和相应方法的有效性.  相似文献   

6.
针对现代飞机布局中融合体型机身的大攻角复杂绕流,通过测压及PIV风洞实验对头部扰动对融合体机身流动的影响及融合体机身背涡结构进行了研究.在模型头部设置人工扰动的实验表明融合体机身气动特性不会受到头部扰动的影响,常规旋成体机身的不确定性问题在融合体机身中并不存在;其次,大攻角下融合体机身背涡沿轴向从前往后可依次分为锥形流线性发展区、背涡强度衰减区、背涡非对称破裂区及完全破裂区,文中给出了这种背涡结构与相应截面气动力沿轴向变化之间的关系;再次,本文给出了融合体机身背涡涡心轨迹及背涡结构沿轴向分区特性随攻角的演化规律;最后,本文在Re=1.26×105~5.04×105范围内对融合体机身Re数效应的研究进一步证实了前人的结论:融合体型机身绕流对Re数影响的不敏感性,Re数仅对绕流中的二次分离和相应的吸力峰值产生较小的影响.  相似文献   

7.
主梁和拉/吊索是大跨度桥梁的关键结构构件,通常具有较小的刚度和阻尼比,在来流风作用下,易在结构尾部形成周期性旋涡脱落,进而诱发涡激振动等多种形式的风致振动.主梁和拉/吊索结构的风致振动会加重结构疲劳,甚至影响桥梁运营安全.因此,发展大跨度桥梁风振控制方法,不仅可以丰富大跨度桥梁空气动力学理论,还具有重要的理论意义和工程价值.本文从涡动力学出发,提出基于稳定吸/吹气的主、被动流动控制方法,消除主梁和拉/吊索结构尾流区的周期性旋涡脱落,实现减小非定常气动力与风致振动响应的控制目标.  相似文献   

8.
本文根据磁层粒子动力学的基本原理,假定中内磁层的带电粒子为绝热运动,并通过波-粒相互作用,投掷角为各向同性分布,在随时间变化的电磁场中跟踪粒子弹跳平均的对流运动,包括电场漂移、磁场梯度和曲率漂移,同时考虑电子沉降造成的损失,建立了中内磁层低能电子通量分布模式.利用该模式,本文模拟了磁暴期间中内磁层低能电子通量的变化过程,并与卫星观测数据进行了比较.结果表明,模式计算结果与卫星观测数据的变化趋势吻合,对数通量相对于卫星观测结果的均方根(rsm)误差在0.5~1.0.  相似文献   

9.
合成射流控制圆柱分离及绕流结构的实验研究   总被引:3,自引:0,他引:3  
在水槽中对合成射流控制圆柱分离及其绕流结构进行了实验研究. 射流出口为狭缝, 由圆柱前驻点向上游喷射. 实验表明: 与传统的将射流出口置于分离点附近或分离区内一样, 采用的合成射流布置方式对圆柱绕流分离同样具有很好的控制效果, 但控制机理不同. 在本实验采用的合成射流作用下, 圆柱绕流的前驻点前移, 在狭缝出口两侧形成一对旋涡. 当基于合成射流出口平均速度的雷诺数ReU约小于43时, 绕流在圆柱迎风面前形成闭合包线, 起到前缘修形的作用; 而在ReU较大时则在圆柱迎风面前形成开式包线, 并使绕过圆柱的流体具有很强的湍流动能. 因此, 不论ReU的大小如何, 合成射流都能改善圆柱绕流的分离状况. 对于圆柱背风面流动, 随着ReU的增大, 后缘分离区逐渐减小, 在圆柱上游形成开式包线, 且大约当ReU大于344时, 圆柱绕流可完全再附. 此时, 绕过圆柱的流体在后驻点附近汇合, 形成强剪切层, 诱导产生周期性向下游脱落的旋涡.  相似文献   

10.
采用等效比热法对功能流体在光滑直圆管和三种内嵌同轴圆柱的圆管内的流动和传热特性进行了数值模拟,并利用场协同理论对流场进行了分析.结果表明,在内嵌同轴圆柱的圆管中,功能流体的传热效果随着Ste数的减小而增大,这与功能流体在光滑直圆管中流动的情况类似,但是与光滑直圆管相比,功能流体在内嵌同轴圆柱的圆管内流动可以明显的提高换热能力,且换热强化随着内嵌圆柱的直径增加而增加,但功耗也明显增加.  相似文献   

11.
为了评估弯曲冷却孔通道对涡轮叶片前缘冷却效率和流动结构的影响,本文采用分离涡拟(DES,Detached Eddy Simulation)方法,在全局吹风比M=0.7的条件下对AGTB涡轮叶栅进行了数值拟研究.直冷却孔和弯曲冷却孔被分别布置于叶片近前缘的吸力面侧和压力面侧.着重分析讨论了冷却孔附近区域的湍流场结构、顺压梯度对湍流场结构的影响、以及壁面冷却效率分布.数值结果显示,弯曲冷却孔通道对提高气冷却效率具有积极的作用.在吸力面侧,弯曲冷却孔的冷却效率比直孔的冷却效率提高了约82%,压力面侧提高了约77%.  相似文献   

12.
为发展适用于高速流动的壁函数边界条件以降低摩阻和热流模拟时的网格相关性,针对Nichols等人提出的可压缩壁函数边界条件开展了改进研究.首先,通过数值试验修正了可压缩速度壁面律的参数取值·9其次,基于数值试验和理论分析,对温度壁面律的表达式进行了修正;最后,推导了近壁区的热传导项表达式,更准确地实现了壁函数边界条件与CFD程序的耦合.之后,对修正的可压缩壁函数边界条件开展了应用研究.对超声速平板湍流边界层的模拟结果表明:壁函数在壁面法向第1层网格y+〈400时均能给出准确的壁面热流密度和摩擦系数值,且在稀网格下也可得到合理的边界层速度型、温度型以及湍流涡黏性系数分布;数值实验表明对原始壁函数的修正显著提高了热流密度和摩擦系数的模拟精度.对包含分离流动的超声速凹槽和高超声速轴对称压缩拐角算例的数值模拟发现:基于充分发展的附着湍流边界层理论建立的可压缩速度壁面律对分离区内部近壁区仍然近似适用,可保证分离区内部给出可靠的摩擦系数和热流密度;而对于分离/再附点附近,壁函数的模拟精度相对较差,其原因在于分离/再附点附近的真实速度型与壁函数中速度壁面律形式出现明显差别.  相似文献   

13.
向心涡轮叶轮顶部间隙泄漏流动特性研究   总被引:1,自引:0,他引:1  
对微型燃气轮机向心涡轮叶轮顶部间隙泄漏流动,在级环境下进行了全三维粘性数值模拟研究.结果表明,轮盖和叶轮叶片顶部之间的相对运动引起的刮削流以及叶轮顶部压力面和吸力面两侧的压差对间隙泄漏流动起主要控制作用,叶顶线速度越高,间隙尺寸越小,刮削作用越强;改变叶轮转速对叶轮中部和导风轮顶部间隙内的泄漏速度影响不大,但是叶轮转速能明显影响通道涡涡核与吸力面之间的距离;间隙泄漏量主要在导风轮顶部区域形成,如布置泄漏抑制结构,在轮盖子午弦长的中后部将是最有效的.  相似文献   

14.
徐杨  冯立好 《中国科学(E辑)》2013,(10):1112-1120
利用二维PIV测速技术研究了射流孔口与壁面距离对合成射流涡环撞击壁面过程的影响,分析了涡环撞击壁面的演化规律,给出了流场的统计特性.研究结果表明,不同的孔口与壁面距离的差异,最终体现在涡环靠近壁面时涡量强度及撞击速度的差异;基于孔口直径的无量纲距离接近或小于合成射流无量纲冲程时,涡环撞壁会在壁面附近诱导产生二次涡结构.因此,合适的孔口与壁面距离对涡环撞击壁面效果起着至关重要的影响.流场统计特性分析表明,涡环撞壁后形成壁面射流,其时均速度最大值衰减速率和射流半宽度扩展速率随孔口与壁面距离的增加而减小.无量纲化的壁面射流速度型均表现出自相似特性,并且与壁面层流射流的理论曲线吻合较好.  相似文献   

15.
采用单步化学湿法(超声膜扩散法)制备出了3种体积分数的水基银纳米流体,实验研究了纳米流体横掠新型水滴形微针肋热沉的流动和传热特性.结果表明:不同体积分数下的纳米流体压降差别很小;相同体积流量下,与基液比较,纳米流体进出口压降略有增加,但增加并不明显;与纯水相比,由于表面活性剂的引入增加了流体粘度,相同流量下,纳米流体的压降稍大于纯水值,但最大差距不超过10%.粒子的体积份额对纳米流体对流换热系数影响较大.纳米粒子的存在对换热性能有明显提高,但过高的黏度对纳米流体的强化传热效果有一定的抑制作用.与去离子水相比,当银粒子体积分数达到0.012%后,纳米流体的综合效果才能逐渐体现.  相似文献   

16.
一种单相机三维体视PIV技术及其应用   总被引:1,自引:0,他引:1  
三维体视粒子图像测速(Volumetric PIV)是获得空间体内三维速度场的激光测速技术.本文详细介绍了一种单相机三维流场测速新方法,其原理是在相机与被测流场之间加装一个三棱面特效透镜,光线通过该透镜三个棱面的折射能实现多相机不同视角成像的效果,经过三维粒子的重构,进而实现三维体视PIV的测量.论文对三维空间标靶标定、标定函数的自修正和三维粒子重构进行了误差分析.在零质量射流涡环测量方面的应用表明,该方法能够获得零质量射流涡环三维流动结构的时序结果,且具有较高的测量精度,体相关分析经过两次迭代后速度矢量的辨识率能达到95%左右.涡结构的辨识分别采用了ci与涡量判据,通过比较可以看出ci判据能有效的消除射流剪切流动的影响,对旋涡结构的辨识明显优于涡量判据.  相似文献   

17.
以水和橄榄油为例研究了两流体换热器内只考虑传热引起的(火积)耗散的情况下,粘性热对换热过程中两流体(火积)的影响.结果表明,对于动力粘度较大的流体粘性热对两流体(火积)损耗的影响不能忽略.粘性热效应维持了流体的传热能力,使换热过程的(火积)的损耗幅度相对减小;粘性热效应增加了导热引起的熵产,使换热过程的可用能损失相对增加.对于动力粘度较大的流体,在换热面积固定的条件下当流体质量流率增加到一定程度时,粘性热效应对(火积)的贡献幅度甚至大于传热引起的(火积)的耗散幅度,从而使换热器内损耗的幅度随着质量流率的增加而减小.在其他条件相同的情况下,选择冷流体为较小热容流率的流体时传递单位热量下的传热(火积)损耗率和熵产率要小于选择热流体为较小热容流率的流体时传递单位热量的传热(火积)损耗率和熵产率.  相似文献   

18.
管内核心流强化传热的机理与数值分析   总被引:3,自引:0,他引:3  
刘伟  杨昆 《中国科学(E辑)》2009,39(4):661-666
提出了管内核心流强化传热的方法,其原理是通过在充分发展的管内层流核心流区域采取强化传热措施,从而在管内壁附近形成一个等效的热边界层,以加大壁面附近流体的温度梯度,达到强化表面换热的目的,但又不显著地增加流动阻力.对空气和水2种流体的分析比较和计算结果说明:管内核心流传热强化的原理和方法对指导高效一低阻热交换器的设计具有一定的意义.  相似文献   

19.
通过数值求解Reynolds平均的Navier-Stokes方程组,对重要的流动控制手段之涡流发生器(vortex generator,简称VG)的绕流流场及其对主流的影响规律进行计算模拟.首先,预测平板上单一涡流发生器流动,验证数值计算方法,并认识含涡流发生器流场的基本流场特征;其次,预测标准模型——ONERA-M6机翼跨声速流动,探索激波/边界层干扰流动特征;再次,在超临界机翼25%当地弦长附近布置一排涡流发生器,探索它们对机翼跨声速流动边界层的干扰效应;最后,将这些涡流发生器位置提前(距前缘3.5%当地弦长),检验其对低速大攻角流动的影响规律.结果表明,7个VG能有效抑制跨声速强激波/边界层干扰导致的分离,减小展向流动;也能大幅缩减低速大攻角状态下的分离范围.  相似文献   

20.
高速动力卡盘是高速数控车床的重要功能部件.夹紧力损失是限制动力卡盘转速提高的首要因素.考虑动力卡盘传动机构在低速阶段与高速阶段的变形差异、卡盘传动机构的摩擦力、回转液压缸中液压油液的压缩性等3个因素,建立了夹紧力损失分段模型;并针对刚度不对称的动力卡盘,提出了修正的夹紧力损失计算模型.经实验验证,该模型具有较高的精度,能较好地解释总体夹紧力损失系数随转速的升高而增大的实验现象.另外,还讨论了动力卡盘在升速各阶段的夹紧力损失系数、各阶段之间的临界转速、以及楔式动力卡盘的自锁能力.具有小楔形角(α〈20o)的楔式动力卡盘,在常规润滑状态下(μ0〉0.06),夹紧力损失分为两个阶段,低速阶段(升速第一阶段)的夹紧力损失系数约是中、高速阶段(升速第二阶段)的70%.具有较大楔形角(α〉20o)或者极低摩擦系数(μ0〈0.06)的楔式动力卡盘,夹紧力损失最多可分为3个阶段,在高速阶段(升速第三阶段),楔式传动机构不具有自锁能力,夹紧力损失与回转液压缸是否有液压锁以及液压油的压缩性有关,第三阶段的局部夹紧力损失系数是第二阶段的1.75~2.13倍.本文提出的分段模型有利于深入全面地认识动力卡盘的夹紧力损失机理,对动力卡盘的优化设计和转速的提高有重要的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号