首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为确定结构中的有效预应力水平,对巴东长江大桥索塔锚固区结构中具有多种线形的预应力筋孔道摩阻损失进行了试验研究,介绍了测试原理、方法以及获得的试验成果,并对结果进行了分析.试验获得了不同线形预应力筋在各分级张拉荷载作用下的预应力损失值;采用最小二乘原理,根据测试数据进行回归计算得到了摩阻系数和孔道偏差系数;与中国、美国各相关规范进行了对比,试验发现测试值与规范参考值有一定偏差.对于类似重要工程结构,建议宜采用试验测试方法确定孔道摩阻损失水平.  相似文献   

2.
在预应力混凝土结构中,由子孔道磨擦及锚具回缩等损失致使预应力沿预应力筋产生显著的变化。本文提出采用约束次弯矩法精确计算考虑各种预应力损失后的超静定结构的次弯矩,本文方法与等效荷载法不同,它是直接由杆件单元的主弯矩计算次弯矩的方法,本文方法的计算结果为精确解,文未附有工程应用实例。  相似文献   

3.
吴宗璋  李子特 《甘肃科技》2012,28(5):109-110
大跨度预应力混凝土箱型梁桥需施加的预应力以及施加后在结构中所产生的有效预应力的确定是保证预应力结构安全性能的关键,而相关设计规范中只提供了一般条件下预应力的摩阻损失数据,对于大曲率预应力筋混凝土结构,其孔道摩阻损失都必须进行专门的孔道摩阻试验测试.预应力混凝土结构的孔道摩阻损失主要是因为预应力钢筋与管道壁之间摩擦引起的,由于力筋与管道壁接触并沿管道滑动而产生摩擦阻力,进而产生摩阻损失.摩阻损失可分为孔道弯曲影响和孔道偏差影响两部分,孔道弯曲影响的摩阻损失仅在曲线部分加以考虑,而由孔道偏差所引起的摩阻损失在直线段和曲线段均应加以考虑.预应力混凝土结构的孔道摩阻损失主要与预应力钢束与管道壁的摩擦系数μ和管道每米局部偏差对摩擦的影响系数k有关.  相似文献   

4.
大跨度刚构桥箱梁抗剪承载力影响参数分析   总被引:2,自引:0,他引:2  
以大跨度连续刚构桥箱梁的中墩附近节段和跨中弯矩变号附近节段为研究对象,建立相关分析模型,开展包括多种剪跨比与不同配箍率、不同腹板纵向普通钢筋配筋率及不同竖向预应力的组合共54种组合分析,得出各参数对抗剪承载力的影响,分析各项因素的抗剪作用和箱梁截面抗剪机理,为桥梁抗剪设计和计算方法提供依据.  相似文献   

5.
以贵都高速大跨径预应力混凝土连续刚构桥(芭茅冲大桥)为工程实例,采用有限元程序Midas/Civil对其进行施工过程和运营阶段仿真计算,分析混凝土超重、预应力损失、混凝土收缩徐变、刚度损失等因素对大跨径预应力混凝土连续刚构桥跨中长期挠度的影响。计算结果表明:混凝土超重和桥面铺装施工误差导致的自重增加均可引起桥梁跨中长期挠度增加,徐变系数、环境相对湿度的变化、预应力损失等因素对桥梁跨中长期下挠影响显著;梁体刚度降低跨中长期挠度增加较多,且早期刚度的降低对桥梁跨中挠度增加影响较大。  相似文献   

6.
对预应力混凝土桥梁结构来说,预应力孔道的偏差系数k和预应力筋孔壁的摩擦系数μ的实际值与设计值往往会有偏差,这对施工和施工控制都是不利的,因此有必要对预应力摩阻损失进行现场测试.结合桥梁工程现场摩阻试验对孔道摩阻系数进行了研究,结果表明在现有施工水平下,摩阻系数的实际值与设计值相比偏大,这一结论可供桥梁工程技术人员参考.  相似文献   

7.
目前大跨度连续刚构桥跨中下挠过大已成为普遍现象.挠度过大,影响行车的安全性,降低桥梁的使用寿命,严重影响了大跨度连续刚构桥的发展.针对这个问题,研究了纵向预应力对跨中下挠的影响,采用MIDAS建立了空间模型,分析了预应力损失对桥梁变形的影响,对大跨度连续刚构桥的设计指明了方向.  相似文献   

8.
有效监测后张法有粘结预应力结构在施工过程中产生的短期预应力损失大小是评估整个预应力结构安全性的重要手段。基于对现有预应力损失监测难题及预应力损失计算的理论分析,提出了光纤光栅自感知钢绞线短期预应力损失的监测技术。基于此技术,有效监测了直线及曲线孔道梁的短期预应力损失,并与应变片监测值及理论计算值进行比较。监测结果表明:直线孔道梁短期预应力损失率约10% ,曲线孔道梁短期预应力损失约24% ;对比理论计算值,应变片的误差最大接近10.01%,且同一测点处不同应变片最大差值接近10%,数据离散型较大,而光纤光栅监测到的梁内最终有效应力误差最大仅为4.60%,且在监测过程中始终保持良好的监测性能,可见光纤光栅传感器相比电阻应变片更适合体内预应力监测。  相似文献   

9.
双洋大桥是大跨度铁路连续箱梁桥,孔道摩阻系数的确定是其施工控制中的关键问题,会影响控制张拉力的准确施加.目前桥梁设计规范虽给出了孔道摩阻和偏差系数的取值范围,但是预应力孔道摩阻影响因素复杂,需要通过现场摩阻试验才能确定.选择主桥5号墩顶1号块直筋和弯筋2种典型测试钢束,通过在垫板和限位板之间设置高精度穿心式压力传感器,千斤顶后工具锚设置夹片的安装方法,开展了双洋大桥孔道摩阻试验研究,并采用最小二乘法计算了预应力束孔道摩阻系数.试验表明:该桥孔道摩阻系数μ为0.232,孔道偏差系数k为0.002 6,均大于设计推荐值;弯曲型预应力钢束摩阻偏差大于直线型钢束,且钢束长度越大,偏差值越大,孔道摩阻损失不容忽视.  相似文献   

10.
为明确在计算连续梁桥主梁不同荷载效应(位移、正负弯矩和剪力)的冲击系数时,采用哪一阶频率计算更加合理,以分联长度为r×30 m(跨数r=3,4,5,6)的预应力混凝土连续梁桥为研究对象,运用理论分析与有限元数值模拟相结合的手段,研究了位移冲击系数、正负弯矩冲击系数和剪力冲击系数与前3阶频率的对应关系。首先运用动力学和曲率模态理论得到了位移冲击系数、正负弯矩冲击系数和剪力冲击系数与各阶振型的关系式;接着运用梁格法分别建立r×30 m预应力混凝土连续梁桥的MIDAS Civil有限元数值模型,然后利用傅里叶级数分别对有限元分析中得到的前3阶竖弯振型进行拟合,最后将拟合得到的振型函数代入不同效应的冲击系数与各阶振型的关系式,从而分别得到前3阶竖弯模态对不同效应冲击系数的贡献百分比,并与已有研究成果进行对比,对该理论分析正确性进行了验证。研究结果表明:位移冲击系数、正弯矩冲击系数和剪力冲击系数根据第1阶竖弯频率来计算更加合理,在前3阶竖弯模态中,第1阶模态贡献了跨中最大动位移的84.4%~99.5%、跨中截面最大正动弯矩的77.2%~98.7%、支座截面最大动剪力的84.1%~99.1%;负弯矩冲击系数则根据第2阶竖弯频率来计算更加合理,在前3阶竖弯模态中,第2阶模态贡献了支座截面最大负动弯矩的70.0%~98.2%。  相似文献   

11.
根据我国现行《预应力混凝土结构抗震设计规程》(JGJ 140-2004),以设防烈度为8度(0.2g)地区的多跨多层预应力混凝土框架结构柱端弯矩增大系数为研究对象,对其合理取值问题进行了探讨.在SAP2000与PERFORM-3D软件中,采用局部纤维铰梁单元,对6个PC平面框架建立了弹塑性分析模型,并对其进行了静力弹塑性分析(Pushover分析)与动力弹塑性时程分析.计算结果表明:按照现行规范设计的PC框架,基本上可以满足8度区罕遇地震作用下的抗震要求,但是结构在大震作用下形成的是以底层柱端出铰为主的梁柱铰屈服机制,对结构抗震不利;随着柱端弯矩增大系数的增加,结构的局部构件抗震性能以及屈服机制均有很大程度的改善,当边柱和中柱的柱端弯矩增大系数分别增加到2.0,1.8时,预应力混凝土框架结构能够实现对结构抗震有利的以梁出铰为主的梁柱铰屈服机制,甚至是梁铰屈服机制.因此,建议在进行预应力抗震技术规程的修订时,适当提高框架结构柱端弯矩增大系数的取值.  相似文献   

12.
根据我国现行《预应力混凝土结构抗震设计规程》(JGJ 140-2004),以设防烈度为8度(0.2 g)地区的多跨多层预应力混凝土框架结构柱端弯矩增大系数为研究对象,对其合理取值问题进行了探讨.在SAP2000与PERFORM-3D软件中,采用局部纤维铰梁单元,对6个PC平面框架建立了弹塑性分析模型,并对其进行了静力弹塑性分析(Pushover分析)与动力弹塑性时程分析.计算结果表明:按照现行规范设计的PC框架,基本上可以满足8度区罕遇地震作用下的抗震要求,但是结构在大震作用下形成的是以底层柱端出铰为主的梁柱铰屈服机制,对结构抗震不利;随着柱端弯矩增大系数的增加,结构的局部构件抗震性能以及屈服机制均有很大程度的改善,当边柱和中柱的柱端弯矩增大系数分别增加到2.0,1.8时,预应力混凝土框架结构能够实现对结构抗震有利的以梁出铰为主的梁柱铰屈服机制,甚至是梁铰屈服机制.因此,建议在进行预应力抗震技术规程的修订时,适当提高框架结构柱端弯矩增大系数的取值.  相似文献   

13.
为研究多点非一致激励对高墩连续刚构桥地震响应的影响规律,以某跨径为48 m+96 m+48 m的组合高墩连续刚构桥为算例,建立高墩连续刚构桥的三维有限元数值模型,计算高墩连续刚构桥在纵向随机地震动激励下,考虑视变化的波速以及视波速随地震动频率变化时的多点激励响应分析.研究结果表明:主梁的纵向位移、横向弯矩和轴力响应及桥墩的纵向位移、横向弯矩和纵向剪力响应随着视波速的变化有所不同,与常数视波速100 m.s-1下结构的响应相比,视波速随频率变化情况下的响应量显著增大,1号墩处主梁的纵向位移、横向弯矩和轴力分别增大了2.03、1.39和1.37倍,1号墩、2号墩墩顶的纵向位移、墩底横向弯矩和墩底的纵向剪力均增大约1.37倍.考虑随频率变化的视波速对高墩连续刚构桥的影响是必要的.  相似文献   

14.
针对悬臂施工PC梁桥施工过程中恒载和预应力的弯矩叠加过程进行了分解和对比分析,揭示了悬臂施工PC梁式桥下挠机理,并总结恒载零弯矩法在挠度控制中的不足,据此提出新的钢束配置方法.研究结果表明:新的钢束配置方法采用"大悬臂多配束,小悬臂少配束"的钢束配置形式,能保证大部分节段预应力弯矩可以抵消恒载弯矩,又能达到优于恒载零弯矩法控制跨中挠度的目的;将该法分别应用于主跨70 m刚构桥和主跨168 m连续梁桥,较原设计方案跨中挠度均明显改善.  相似文献   

15.
针对现行规范计算得到的预应力损失与工程实际存在偏差的问题,考虑施工因素、材料性能和环境条件的随机性对预应力损失的影响,将响应面法引入到预应力损失的预测中.以某特大跨连续刚构桥为工程背景,选择建设期随机误差较为常见的8个主要结构参数,进行Bucher试验设计,构造不含交叉项的二次多项式响应面模型,将预应力损失与各随机参数之间的复杂隐性关系通过显式函数近似地表达出来;基于逐步回归进行基函数的显著性分析与筛选,运用F检验和修正的决定系数进行响应面模型的显著性和精度检验;同时,采用秩相关系数,分析各参数对预应力损失的敏感性;最后,结合Monte Carlo抽样技术,对预应力损失进行概率意义上的预测,得到一定置信概率下的预应力损失区间.  相似文献   

16.
针对预应力混凝土框架梁设计方法的特殊性,本文以8度区(0.2g)抗震等级为二级的多层多跨预应力混凝土框架结构为例,研究规范对预应力混凝土框架结构柱端弯矩增大系数取值的合理性,提出以梁端实际抗震受弯承载力调整柱端弯矩的方法进行预应力混凝土框架结构设计.分别以梁端地震组合弯矩和梁端实际抗震受弯承载力调整柱端弯矩设计8榀预应力混凝土框架,在OpenSees中建立其基于纤维梁柱单元的数值分析模型,并对其进行静力弹塑性分析与动力时程分析.研究表明:按现行规范设计的预应力混凝土框架结构,在罕遇地震下底层柱端出铰严重,提高其柱端弯矩增大系数,可以有效地改善结构屈服机制;04规程中柱端弯矩增大系数的取值偏小,规程修订时应给予适当提高,对抗震等级为二级的预应力混凝土框架结构,其柱端弯矩增大系数的取值≥2.0;本文建议二级PC框架按梁端实际抗震受弯承载力调整柱端弯矩,其取值为1.4.  相似文献   

17.
针对局部张拉预应力筋加固混凝土超静定梁内力,采用结构力学方法进行了计算分析.首先讨论了不等跨连续梁在不同部位张拉预应力筋时的内力计算,得出了加固结构不同截面时超静定梁内支座产生的主、次弯矩及综合弯矩的计算表达式.在此基础上,分析了等跨连续梁的内力计算,根据叠加原理,即可得到超静定梁多个截面同时加固时的总弯矩.论文还分析了预应力筋位置对加固连续梁内力的影响.所得出的结果可作为局部张拉预应力筋加固混凝土等跨及不等跨连续梁内力计算的依据.  相似文献   

18.
为研究弯桥预应力摩阻损失,采用实验与理论分析的方法,从规范中预应力摩阻损失公式出发,通过对实际工程进行预应力摩阻试验和试验梁的锚具变形预应力损失试验,并采用公路桥梁结构分析软件DR.Bridge,对实际工程进行了实际模拟.研究结果表明:根据所测数据推算得出的k值与规范值也存在一定的偏差,施工因素对管道偏差系数影响很大;实测值接近于根据实测推算μ值、k值所得的模型值,进一步说明实测值可靠,μ和k值能够很好的反映当前管道的摩阻及偏差状况.分析所得结论对弯桥的设计、监控、施工、养护等均有积极的意义.  相似文献   

19.
完成4根无黏结预应力混凝土两跨连续梁受力全过程试验,对支座反力及控制截面弯矩重分布程度进行分析.运用非线性阶段的预应力次弯矩定义,将非线性阶段连续梁总弯矩分解成次弯矩和荷载弯矩.研究加载全过程次弯矩和荷载弯矩的演化规律,提出了对初始次弯矩和弹性荷载弯矩分别调幅的无黏结预应力混凝土连续梁弯矩调幅公式.采用已有文献中一组试验梁对所提公式的计算精度进行验证.研究结果表明,无黏结预应力连续梁弯矩重分布的原因可以归结为无黏结筋应力的增长以及连续梁各部分割线刚度比值的改变.承载力极限状态下,次弯矩折减系数随中支座综合配筋指数的增大而增大,荷载弯矩调幅系数随其增大而降低.文中弯矩调幅建议公式较已有公式更接近试验结果,可为设计规范中相关条款的制订提供参考.  相似文献   

20.
基于缓粘结预应力混凝土两跨连续梁的受弯试验研究,对加载过程中预应力筋的摩阻力进行了分析研究,并计算了缓粘结预应力连续梁的预应力损失。通过分析得出了在预应力损失中孔道摩擦损失起主要作用的结论;对比试验中摩阻力测试值和预应力损失计算值,虽然二者存在一定的差异,但相差并不大,表明试验数据有一定的可信度,为在设计缓粘结预应力混凝土连续受弯构件提供参考数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号