首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A H Igel  M Ares 《Nature》1988,334(6181):450-453
U2 small nuclear RNA is a highly conserved component of the eukaryotic cell nucleus involved in splicing messenger RNA precursors. In the yeast Saccharomyces cerevisiae, U2 RNA interacts with the intron by RNA-RNA pairing between the conserved branchpoint sequence UACUAAC and conserved nucleotides near the 5' end of U2 (ref. 4). Metazoan U2 RNA is less than 200 nucleotides in length, but yeast U2 RNA is 1,175 nucleotides long. The 5' 110 nucleotides of yeast U2 are homologous to the 5' 100 nucleotides of metazoan U2 (ref. 6), and the very 3' end of yeast U2 bears a weak structural resemblance to features near the 3' end of metazoan U2. Internal sequences of yeast U2 share primary sequence homology with metazoan U4, U5 and U6 small nuclear RNA (ref. 6), and have regions of complementarity with yeast U1 (ref. 7). We have investigated the importance of the internal U2 sequences by their deletion. Yeast cells carrying a U2 allele lacking 958 nucleotides of internal U2 sequence produce a U2 small nuclear RNA similar in size to that found in other organisms. Cells carrying only the U2 deletion grow normally, have normal levels of spliced mRNA and do not accumulate unspliced precursor mRNA. We conclude that the internal sequences of yeast U2 carry no essential function. The extra RNA may have a non-essential function in efficient ribonucleoprotein assembly or RNA stability. Variation in amount of RNA in homologous structural RNAs has precedence in ribosomal RNA and RNaseP.  相似文献   

3.
4.
J Lingner  J Kellermann  W Keller 《Nature》1991,354(6353):496-498
Poly(A) polymerase is essential for the maturation of messenger RNA, adding tracts of adenosine residues to the 3' end of precursor RNA generated by endonucleolytic cleavage. This mechanism of mRNA 3' processing seems to be similar in yeast and in higher eucaryotes, although there are differences in the recognition signals in the pre-mRNA. Here we describe the cloning of the gene for yeast poly(A) polymerase. The enzyme is encoded by a single and essential gene located near the centromere on the left arm of chromosome 11. Poly(A) polymerase purified from recombinant Escherichia coli has the same physical and biochemical properties as the yeast enzyme. The yeast poly(A) polymerase shares features of sequence with its mammalian homologue.  相似文献   

5.
6.
Burns DM  D'Ambrogio A  Nottrott S  Richter JD 《Nature》2011,473(7345):105-108
Cytoplasmic polyadenylation-induced translation controls germ cell development, neuronal synaptic plasticity and cellular senescence, a tumour-suppressor mechanism that limits the replicative lifespan of cells. The cytoplasmic polyadenylation element binding protein (CPEB) promotes polyadenylation by nucleating a group of factors including defective in germline development 2 (Gld2), a non-canonical poly(A) polymerase, on specific messenger RNA (mRNA) 3' untranslated regions (UTRs). Because CPEB regulation of p53 mRNA polyadenylation/translation is necessary for cellular senescence in primary human diploid fibroblasts, we surmised that Gld2 would be the enzyme responsible for poly(A) addition. Here we show that depletion of Gld2 surprisingly promotes rather than inhibits p53 mRNA polyadenylation/translation, induces premature senescence and enhances the stability of CPEB mRNA. The CPEB 3' UTR contains two miR-122 binding sites, which when deleted, elevate mRNA translation, as does an antagomir of miR-122. Although miR-122 is thought to be liver specific, it is present in primary fibroblasts and destabilized by Gld2 depletion. Gld4, a second non-canonical poly(A) polymerase, was found to regulate p53 mRNA polyadenylation/translation in a CPEB-dependent manner. Thus, translational regulation of p53 mRNA and cellular senescence is coordinated by Gld2/miR-122/CPEB/Gld4.  相似文献   

7.
8.
B C Rymond  M Rosbash 《Nature》1985,317(6039):735-737
Analysis of messenger RNA splicing in yeast and in metazoa has led to the identification of an RNA molecule in a lariat conformation. This structure has been found as an mRNA splicing intermediate in vitro and identical molecules have been identified in vivo. Lariat formation involves cleavage of the precursor at the 5' splice site (5' SS) and the formation of a 2'-5' phosphodiester bond between the guanosine residue at the 5' end of the intron and an adenosine within the intron. The yeast branchpoint is located within the absolutely conserved TACTAAC box (that is, the last A of the TACTAAC box is the site of formation of the 2'-5' phosphodiester bond with the 5' end of the intron)3,4. Moreover, efficient 5' SS cleavage and lariat formation require proper sequences at the 5' splice junction and within the TACTAAC box. Here we demonstrate that 5' SS cleavage and lariat formation take place in vitro in the absence of the 3' SS and much of the 3' junction. These results are discussed in light of possible differences between yeast and metazoan mRNA splicing.  相似文献   

9.
P Bouvet  J G Belasco 《Nature》1992,360(6403):488-491
Despite the variety of messenger RNA half-lives in bacteria (0.5-30 min in Escherichia coli) and their importance in controlling gene expression, their molecular basis remains obscure. The lifetime of an entire mRNA molecule can be determined by features near its 5' end, but no 5' exoribonuclease has been identified in any prokaryotic organism. A mutation that inactivates E. coli RNase E also increases the average lifetime of bulk E. coli mRNA and of many individual messages, suggesting that cleavage by this endonuclease may be the rate-determining step in the degradation of most mRNAs in E. coli. We have investigated the substrate preference of RNase E in E. coli by using variants of RNA I, a small untranslated RNA whose swift degradation in vivo is initiated by RNase E cleavage at an internal site. We report here that RNase E has an unprecedented substrate specificity for an endoribonuclease, as it preferentially cleaves RNAs that have several unpaired nucleotides at the 5' end. The sensitivity of RNase E to 5'-terminal base pairing may explain how determinants near the 5' end can control rates of mRNA decay in bacteria.  相似文献   

10.
11.
12.
13.
14.
15.
Alpha-thalassaemia caused by a polyadenylation signal mutation   总被引:3,自引:0,他引:3  
  相似文献   

16.
17.
Yeast Sm-like proteins function in mRNA decapping and decay   总被引:31,自引:0,他引:31  
Tharun S  He W  Mayes AE  Lennertz P  Beggs JD  Parker R 《Nature》2000,404(6777):515-518
One of the main mechanisms of messenger RNA degradation in eukaryotes occurs by deadenylation-dependent decapping which leads to 5'-to-3' decay. A family of Sm-like (Lsm) proteins has been identified, members of which contain the 'Sm' sequence motif, form a complex with U6 small nuclear RNA and are required for pre-mRNA splicing. Here we show that mutations in seven yeast Lsm proteins (Lsm1-Lsm7) also lead to inhibition of mRNA decapping. In addition, the Lsm1-Lsm7 proteins co-immunoprecipitate with the mRNA decapping enzyme (Dcp1), a decapping activator (Pat1/Mrt1) and with mRNA. This indicates that the Lsm proteins may promote decapping by interactions with the mRNA and the decapping machinery. In addition, the Lsm complex that functions in mRNA decay appears to be distinct from the U6-associated Lsm complex, indicating that Lsm proteins form specific complexes that affect different aspects of mRNA metabolism.  相似文献   

18.
19.
Sequence of chicken ovalbumin mRNA   总被引:63,自引:0,他引:63  
The complete sequence of chicken ovalbumin mRNA is presented; it is 1,859 residues long, excluding its terminal 'cap' and poly(A). The region coding for ovalbumin lies close to the 'cap' but is separated from the poly(A) by an extensive 3' noncoding region of 637 nucleotides which may have no function that is precisely dependent on its sequence.  相似文献   

20.
A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Wang L  Eckmann CR  Kadyk LC  Wickens M  Kimble J 《Nature》2002,419(6904):312-316
Messenger RNA regulation is a critical mode of controlling gene expression. Regulation of mRNA stability and translation is linked to controls of poly(A) tail length. Poly(A) lengthening can stabilize and translationally activate mRNAs, whereas poly(A) removal can trigger degradation and translational repression. Germline granules (for example, polar granules in flies, P granules in worms) are ribonucleoprotein particles implicated in translational control. Here we report that the Caenorhabditis elegans gene gld-2, a regulator of mitosis/meiosis decision and other germline events, encodes the catalytic moiety of a cytoplasmic poly(A) polymerase (PAP) that is associated with P granules in early embryos. Importantly, the GLD-2 protein sequence has diverged substantially from that of conventional eukaryotic PAPs, and lacks a recognizable RRM (RNA recognition motif)-like domain. GLD-2 has little PAP activity on its own, but is stimulated in vitro by GLD-3. GLD-3 is also a developmental regulator, and belongs to the Bicaudal-C family of RNA binding proteins. We suggest that GLD-2 is the prototype for a class of regulatory cytoplasmic PAPs that are recruited to specific mRNAs by a binding partner, thereby targeting those mRNAs for polyadenylation and increased expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号