首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文首先论述了直接数字频率合成(DDS)技术的发展,并将直接数字频率合成技术与传统的频率合成技术进行了比较。然后深入研究了DDS的工作原理和基本结构,阐述了基于可编程逻辑器件(FPGA)实现DDS技术的意义。重点介绍了DDS技术在FPGA中的实现方法。在系统设计的过程中,本文以Altera公司的FPGA芯片EP2C5T144C8为核心,利用开发工具Quartus II软件,实现DDS设计。  相似文献   

2.
利用DDS (直接数字频率合成)原理、采用FPGA(现场可编程门阵列)芯片EP1C3T144C8实现系统时序及进行波形RAM的设计,并采用单片机进行显示控制及频率和相位设置,实现了高分辨率任意波形信号输出.  相似文献   

3.
本文介绍了直接数字频率合成技术(Direct Digital Frequency Synthesizer,简称DDS)的原理和特点。研究了用FPGA实现DDS的设计方法,给出了为提高芯片运算速度而采用的并行进位加法器、流水线架构的优化方法,采用了线性插值查表法实现DDS的方案。给出了采用ALTERA公司的Cyclone系列FPGA芯片EP1C6144C8进行直接数字频率合成的波形仿真图。简述了程序逻辑运算过程中产生毛刺的原因,并提出消除毛刺的四种方法。  相似文献   

4.
本文使用直接数字频率合成器(DDS)设计和实现正弦信号发生器,并用VHDL硬件语言描述,以Altera Cyclone FPGA EP1C3T144C8作为硬件载体,配合锁相环和高速DAC TH5565芯片实现了正弦信号发生器.  相似文献   

5.
利用DDS技术,结合QUARTUS II、MATLAB等软件,在FPGA芯片上设计实现了一个频率可调的正弦信号发生器.DDS技术设计的信号相位变换连续、稳定度高、易于调整.经过软件设计和硬件验证,结果符合输出频率50Hz~20kHz可调的技术指标.DDS激磁信号源设计具有可靠性、可行性及控制的灵活性.  相似文献   

6.
利用直接数字频率合成技术设计信号发生器,输出的信号频率分辨率高、相位信息连续、频率转换的时间短、可靠性高等优点。系统以单片机和DDS芯片为核心,采用高性能的单片机实现整个电路的控制。本文介绍了DDS的典型结构,根据需求选择性价比较高的DDS芯片AD9852。最后给出DDS信号源设计的结构图。本系统通过软件编程和较少的辅助电路实现信号发生器的功能。  相似文献   

7.
利用FPGA芯片及D/A转换器,采用直接数字频率合成技术,设计实现了一个频率、相位可调的正弦信号发生器,同时阐述了频率合成技术及直接数字频率合成(Direct Digital Frequency Synthesis ,简称:DDS)技术的原理、电路结构,及设计思路和实现方法,最后简要探讨了抑制DDS杂散和噪声的方法.经过设计和电路测试,输出波形达到了技术要求,控制灵活、性能也好,也证明了基于FPGA的DDS设计的可靠性和可行性.  相似文献   

8.
介绍了利用现场可编程逻辑门阵列(FPGA)实现直接数字频率合成信号发生器(DDS)的原理,重点介绍了DDS技术在FPGA中的实现方法以及数控振荡器(NCD)的ROM查找表设计和相位累加器设计,给出了采用FPGA芯片进行直接数字频率合成信号发生器的仿真结果以及系统顶层设计原理图.  相似文献   

9.
为了提高系统速率和信号质量,改善系统的可控性,降低成本,笔者利用现场可编程逻辑门阵列FPGA芯片EP1K30TC-144成功地实现直接数字频率(DDS)系统合成,阐述了DDS的原理及其在FPGA中的设计思路、优化实现方法,电路结构,给出了DDS合成的VHDL源程序,克服了专用DDS芯片的输出频带范围有限,输出杂散大等缺点.  相似文献   

10.
DDS技术的原理及AD9850的应用   总被引:1,自引:0,他引:1  
直接数字合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快、应用广泛等优点.通过介绍DDS技术的基本原理和DDS芯片AD9850的工作特点,阐述如何利用此芯片设计一种正弦信号发生器,并给出了部分AD9850芯片和单片机的硬件接口和程序代码.  相似文献   

11.
利用直接数字频率合成(Direct Digital Synthesis,DDS)技术,以现场可编程门阵列(Fieldprogrammable Gate Array,FPGA)芯片为载体,设计了一个信号发生器.该信号发生器能够产生频率、相位和幅度可调的周期信号.同时,DDS技术自身具有频率和相位调节功能,无需额外硬件调节电路.利用数模转换器基准电压可调特性设计实现了信号幅度调节.  相似文献   

12.
李萍  王裕如  潘亮 《科技信息》2009,(35):27-28
本设计利用FPGA芯片实现直接频率合成器(简称DDS)系统电路的核心部分,采用VHDL硬件描述语言完成对DDS核心电路中各个模块的设计,并设计了与DDS系统相对应的外围硬件电路。这样设计的合成器能够利用8MHz的参考时钟信号合成出频率在O~500KHz的正弦波和余弦波。由于FPGA芯片具有现场可编程的特性,所设计的DDS能够根据不同的要求进行灵活改进,同时具有高集成度、运算速度快、低功耗的特点。  相似文献   

13.
采用直接数字频率合成(DDS)技术,设计实现了一种基于单片机控制,以DDS芯片AD 9959为核心的高频脉冲雷达射频信号源.系统由C 8051单片机对输入控制字进行处理,从而执行对AD 9959芯片串行控制编程,产生所需的频率、相位和幅度精准的4路高频脉冲雷达信号源,并在其输出级设计了4路低通滤波器以减少串扰和杂散波,保证输出信号的频谱纯净度.该信号源已应用在电离层高频脉冲雷达探测系统中,现场实验结果表明,该信号源系统产生的高频信号频率稳定度高,扫频转换时间短,相位调制精确,且适合于多种编码方式,完全满足高频脉冲雷达对信号源的性能指标和技术要求.  相似文献   

14.
本文设计的信号源应用于的穿墙雷达系统中。介绍了DDS+PLL信号发生原理,分析并采用DDS激励PLL方法完成系统设计。使用了直接数字频率合成器AD9898锁相环频率合成器与AD4113等高集成度芯片设计重点阐述了系统的硬件实现,包括系统原理、主要电路单元设计,实现了频带为1~2GHz的步进频率信号源。  相似文献   

15.
介绍了一种利用FPGA芯片,基于DDS技术的数字频率信号叠加的设计,首先介绍了DDS的工作原理,之后是系统各模块的设计,最后进行了系统的仿真,经过对仿真结果的分析可以得出该设计可以输出稳定的波形,而且可以实现任意频率波形的叠加,进而可以实现数字信号的频率调制和叠加。  相似文献   

16.
介绍了DDS工作原理,设计了一种采用单片机STC89C52控制DDS芯片AD9850的信号发生器系统。实验结果表明,该系统可产生幅度和频率分别可调的正弦波、方波与三角波等波形,且信号输出稳定。  相似文献   

17.
DDS专用芯片AD7008为核心的正弦波发生电路和Philips P89C52单片机构成控制电路,可以完成AM,FM,ASK,FSK和PSK等调制电路.使用单片机对DDS的控制使信号产生具有数字可控制性,解决了调制信号的载波频率、调制度和控制方式不能程控的难题,使数字控制产生的正弦信号和调制信号具有极高的稳定性和可靠性.本设计用了易于购买和使用集成芯片,使设计的软硬件简单,极大地提高了性价比.  相似文献   

18.
根据行波型超声波电机的驱动特点和要求,利用最新的技术和器件,设计了一种采用2片直接频率合成(direct digital frequency synthesis,简称DDS)芯片AD9854、高性能精简指令处理器(advanced RISC machine,简称ARM)开发板S3C2410和专用功率放大芯片PA85相结合的高性能驱动系统,该系统的最大优点是实现了输出信号的频率、相位和幅度可调.实验结果表明,该系统具有精度高、灵活性和可靠性好的数字信号处理优势.  相似文献   

19.
本文介绍了一种基于DDS数字信号发生器的设计与实现的方法,给出了以AD9850芯片为核心的硬件原理图。通过单片机对DDS频率控制字的写入,编程实现输出特定频率的波形,该系统输出波形频率连续可调、稳定度、精度高,适用于当代的尖端的通信系统和精密的高精度仪器。  相似文献   

20.
本文分析了DDS与PLL的工作原理和基本结构,提出以DDS直接激励PLL的频率合成方法,给出了DDS模块、PLL模块和控制单元模块的硬件选择和具体电路设计方法。通过在EDA软件环境下进行设计及仿真,最终利用EPM570T100C、AD9910、ADF4113和ROS-1250W等芯片完成了跳频信号源硬件电路设计。经测试分析,DDS+PLL的频率合成器可输出840~960MHz、频率分辨力小于1Hz的频率信号,适用于高速跳频通信系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号