首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
主要研究了亚纯函数分担全纯函数的正规族问题,证明了:如果F是区域D上的亚纯函数族,且满足L[f]=a0f′+a1f(a0≠0),a,b,c,d为D 上的4个全纯函数。如果对任意的f∈F,满足a(z)≠d(z),b(z)+a1(z)a(z)+a0(z)a′(z)≠2c(z),c(z)-a0(z)a′(z)-a1(z)a(z)≠0,f(z)=a(z) L[f](z)=b(z)且L[f](z)=c(z) f(z)=d(z),则F在D 正规。
  相似文献   

2.
通过研究全纯函数族的正规性,给出了一个一般性的正规定则,改进了李江涛和仪洪勋的结果.设F为区域D上的全纯函数族,k为正整数,并令a(z),b(z)≠0,c(z)≠0为D上解析函数.若对(∨)f∈F,f的零点重级至少为k,且f(z)=0(→)P(f)(k) H(k) H(f,f′,…,(f(k)))=a(z),P(f(k)) H(f,f′,…,f(k)))=b(z)(→)f(z)=c(z).则F在D上正规.  相似文献   

3.
利用Nevanlinna理论研究一类涉及分担函数的亚纯函数族的正规性,得到一个与分担函数相关的正规定则.设k是一个正整数,F是区域D内的亚纯函数族.若对任意的f∈F,其零点重级至少为k,且满足:1)f(z)=0f(k)(z)+∑i=1kbi(z)f(k-i)(z)=a(z);2)f(k)(z)+∑i=1kbi(z)f(k-i)(z)=a(z)■0|f(k+1)(z)+b1(z)f(k)(z)-a′(z)||a(z)|.其中a(z)(a(z)≠0),bi(z)(i=1,2,…,k)是区域D内的全纯函数.则F在区域D内正规.  相似文献   

4.
主要研究了亚纯函数分担全纯函数的正规族问题,证明了:如果扩是区域D上的亚纯函数族,且满足L[f]=a0f'+a1f(a0≠O),a,b,c,d为D上的4个全纯函数。如果对任意的f∈£只满足a(z)≠d(z),b(z)+a1(z)a(z)+a0(z)a’(z)≠2c(z),c(z)-a0(z)a’(z)一a1(z)a(z)≠0,f(z)=a(z)→L[f](z)一b(z)且L[f](z)=c(z)→f(z)=d(z),则£在D正规。  相似文献   

5.
设F是区域D内的亚纯函数族,c(z),b(z)为D内两个不取零值的解析函数,(A)f∈F,f(z)的零点的重数大于等于k,k为正整数. 若L(f)(z)=b(z)(←→)fL(f)=c(z),L(f)(z)=f(k)(z)+a1f(k-1)(z)+…+ak-1f'(z)+akf(z),其中,ai(i=1,2,…,k)为D内的解析函数,则F在区域D内正规.  相似文献   

6.
主要证明了定理:设F是单位圆盘△上的亚纯函数族,F中的任一函数f的极点是重级的,零点重级至少为m 1,m是正整数,h(z)≠0,a0,a1,…,am-1都是D上的全纯函数.如果对任一f∈F,L(f)(z)=f(m)(z) am-1(z)f(m-1)(z) … a1(z)f′(z) a0(z)f(z)≠h(z),z∈D,则F在D上正规.  相似文献   

7.
应用Zalcman引理研究了与导数有分担值的全纯函数族的正规族,把分担值减弱为单项分担值,得到了如下的结论:设F是区域D内的一族全纯函数,a,b是非零有穷复数,若对于每个f(z)∈F,若F满足:(1)f(z)=0=f′(z)=a,f′(z)=a=f′′(z)=b则F在D内正规;(2)k≥2为一整数,b为一正数f(z)=0=f′(z)=a,f′(z)=a=f(k)(z)≤b则F在D内正规.  相似文献   

8.
设F为区域D上的亚纯函数族,k、m、q是正整数,p(w)=w~q a_(q-1)(z)w~(q-1) … a_1(z)w是多项式,H(f,f,…f~(k))是满足r_H~*>0的微分多项式,a(z)、b(z)、c(z)是D上的解析函数,且a(z)≠b(z),6(z)≠0,c(z)≠0,如果对任意的f∈Ff的零点重数至少为K 1,p(f~(k)) H(ff,…f~(k))=a(z)(?)f(z)=0,p(f~(k)) H(f,f…f~(k))= b(z)(?)f(z)=c(z),则F在D上正规。  相似文献   

9.
设F是区域D内的一族亚纯函数,k,m,q是正整数,P(ω)=ωq+aq-1(z)ωq-1+…+a1(z)ω是一多项式,H(f,f′,…,f(k))是满足γH*0的微分多项式,a(z),b(z),c(z)是区域D内的解析函数,且a(z)≠b(z),c(z)≠0.若对于任意的f∈F,f的零点的重数至少是k+1,且有(1)P(f(k)(z))+H(f,f′,…,f(k))=a(z)时,f(z)=0;(2)P(f(k)(z))+H(f,f′,…,f(k))=b(z)时,f(z)=c(z),则F在D内正规.  相似文献   

10.
全纯函数和整函数的正规族   总被引:1,自引:0,他引:1  
在全纯函数及整函数上讨论了{f(z)}和{f(f(z))}的正规族之间的关系,得到关于全纯函数及整函数族的一些正规定则:设F={f(z)}是整函数族,记p(z)=f[f(z)],若在单位圆盘Δ内,f(z)≠0,当p'(z)=a≠0时,|p(z)|=|f[f(z)]|≥h>0;或Vf(z)∈F,|f(0)|<1,当p'(z)=a≠0时,|p(z)|≥h1>0;且当p(z)=0时,|p'(z)|≤h2(>0),则F在Δ上正规.最后给出了其应用.  相似文献   

11.
设k是正整数,F是开平面上的区域D的亚纯函数族,F中每个函数f(z)∈F的零点重数至少为k+1,极点重数至少为3,而a(z)为D上的全纯函数,a(z)不恒等于0。对于F中的每个函数f(z)∈F,若f(z)的全纯系数的线性微分多项式L(f)满足L(f)≠a(z),z∈D,则F在D上正规。  相似文献   

12.
k,l∈N,且k≥2,设F为D内亚纯函数族,对f∈F,在D内的零点之级≥k 1,极点之级≥2.h(z)为D内的全纯函数,在D内的零点之级≥2,且h(z)0.设a1(z),a2(z),...,ak-1(z)和b1(z),b2(z),...,bl(z)为D内的全纯函数.置H(f)(z)=f(k)(z) ak-1(z)f(k-1)(z) ... a1(z)f ′(z) b1(z)f(z) ... bl(z)f l(z).若对f∈F,有H(f)(z)≠h(z)(z∈D)成立,则F在D内正规.  相似文献   

13.
证明了如下结果:设F是区域D内的一族亚纯函数,k≠2是正整数,c,d为两个非零有穷复数.a(z)是一个在D内不取零值的全纯函数.若对每一个f∈F,f的零点重级k,若f(z)=0则f(k)(z)=a(z),f(k)(z)=a(z)则|f(k+1)(z)|h,(h为某一正数),f(z)=c则f′(z)=d,则F在D内正规.  相似文献   

14.
涉及微分多项式的亚纯函数正规性   总被引:3,自引:3,他引:0  
研究了涉及微分多项式的亚纯函数的正规性.继承Schwick的思想将正规族与分担值联系起来,对一族亚纯函数中函数与该函数微分多项式分担值的情况进行研究,得出亚纯函数的正规性.已知定理:设F为区域D上的全纯函数族,k为正整数,a,b,c和d为有穷复数,b≠0,c≠0且b≠a,若对f∈F,f-d的零点重级至少为k,f=0f(k)=a且f(k)=bf=c. 则F在D上正规.本文将这个定理推广到亚纯函数情形,并且将f(k)用f的微分多项式来代替,结论仍成立.  相似文献   

15.
作者证明了以下命题:设F={f}为整函数族,每个函数f∈F,f的零点重数至少为k.又a1(z),a2(z),…,ak(z)为k个整函数.记h(z)=f(k)(z)+a1(z)f(k-1)(z)+…+ak(z)f(z).则若对于区域D内任意点z,有h(z)≠0,|h(z)|<1,且复合函数族{h(f(z))|f(z)∈F}在区域D内正规,则整函数族F在D内正规,并得到涉及齐次微分多项式的整函数族相应的正规定则,推广了已有结果.  相似文献   

16.
设F是区域D内的一族亚纯函数,k,m,q均为正整数,P(w)=wq+aq-1(z)wq-1+…+a1(z)w,H(f,f′,…,f(k))为f的微分多项式且满足γH*0;a(z)≠0,b(z)≠0为区域D内的解析函数,任意的f∈F的零点重级至少为k+1且满足f(z)=a(z)当且仅当P(f(k)(z))+H(f,f′,…,f(k))=b(z),则F在D内正规.  相似文献   

17.
设F是区域D内的亚纯函数族,a,b为互相判别的非零复数,c是任意复数,k≥2,对于任意的f(z)∈F,f(z)-c的零点重级至少为k,若f(k)(z)=a(=>)f(z)=a,f(k)(z)=b(=>)f(z)=b和f(z)=c(=>)f(k)(z)=c,则F在区域D内正规.  相似文献   

18.
 研究涉及微分多项式分担集合的亚纯函数的正规性问题。设k≥2是正整数,F为区域D的一族亚纯函数, 其所有零点重级至少为k;a,b和c是复数,且a≠b,c≠0。如果对于F中的任意一对函数f(z)和g(z),有f与g分担c, 且L(f)与L(g)分担集合S={a,b}, 则F在D内正规。  相似文献   

19.
通过研究正规族与分担值之间的关系,得到如下两个结果:设F是区域D内的亚纯函数族,a1,a2,a3,a4∈C,a1≠a3,a2≠a4,a2≠0,若(A)f∈F,f(z)=a1(→)f'(z)=a2,f(z)=a3(→)f'(z)=a4,则F在D内正规;设F是区域D内的全纯函数族,k∈Z ,a,b∈C,a≠0,b>0,若(A)f∈F,f-a的零点重级均≥k,f=a(→)f(k)=a,f(k)=a(→)0<|f(k 1)|≤b,则F在D内正规.  相似文献   

20.
利用亚纯函数值分布理论与正规理论的一些基本概念、研究方法以及研究成果,并以顾永兴的定理为基础,讨论函数族中任意函数的高阶零点不取固定函数的这类亚纯函数的正规问题,最后得到如下正规定则:设F是单位圆盘内的一族亚纯函数,k为一个正整数,且k≥2,A为一有穷正数,h(z)是全纯函数,其中h(z)≠0,如果对任意的f∈F,f的零点重级至少为k,且f的极点重级至少为3;并且满足当f(z)=0时,必有f(k)(z)≤A;f的k阶导数不取固定函数h(z),即f(k)(z)≠h(z),则F在区域内是正规的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号