首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sampling in spatial vision   总被引:2,自引:0,他引:2  
D M Levi  S A Klein 《Nature》1986,320(6060):360-362
The human visual system is capable of making spatial discriminations with extraordinary accuracy. In normal foveal vision, relative position, width or size can be judged with an accuracy much finer than the size or spacing of even the smallest foveal cones. This remarkable accuracy of spatial vision has been termed 'hyperacuity'. Almost a century ago Ewald Hering proposed that the accuracy of Vernier acuity could be accounted for by averaging of discrete samples along the length of the lines comprising the targets; however, the discovery that Vernier acuity of a few arc seconds could be achieved with dots has rendered the nature and role of sampling in spatial discrimination unclear. We have been investigating the sampling of spatial information in central and peripheral vision (the perifovea) of normal human observers and in observers with strabismic amblyopia. Our results, presented here, show that peripheral vision and central vision of strabismic amblyopes differ qualitatively in their sampling characteristics from those of the normal fovea. Both the periphery and the central visual field of strabismic amblyopes demonstrate marked positional uncertainty which can be reduced by averaging of spatial information from discrete samples.  相似文献   

2.
A S Ramoa  M Shadlen  B C Skottun  R D Freeman 《Nature》1986,321(6067):237-239
Neurones in the visual cortex are highly selective for orientation and spatial frequency of visual stimuli. There is strong neurophysiological evidence that orientation selectivity is enhanced by inhibitory interconnections between columns in the cortex which have different orientation sensitivities, an idea which is supported by experiments using neuropharmacological manipulation or complex visual stimuli. It has also been proposed that selectivity for spatial frequency is mediated in part by a similar mechanism to that for orientation, although evidence for this is based on special use of visual stimuli, which hampers interpretation of the findings. We have therefore examined selectivity for both orientation and spatial frequency using a technique which allows direct inferences about inhibitory processes. Our method uses microiontophoresis of an excitatory amino acid to elevate maintained discharge of single neurones in the visual cortex. We then present visual stimuli both within and outside the range of orientations and spatial frequencies which cause a cell to respond with increased discharge. Our results show that orientations presented on either side of the responsive range usually produce clear suppression of maintained discharge. In marked contrast, spatial frequencies shown to either side of the responsive range have little or no effect on maintained activity. We conclude that there is an intracortical organization of inhibitory connections between cells tuned to different orientations but not different spatial frequencies.  相似文献   

3.
Ohki K  Chung S  Ch'ng YH  Kara P  Reid RC 《Nature》2005,433(7026):597-603
Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100 microm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400 microm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.  相似文献   

4.
He S  MacLeod DI 《Nature》2001,411(6836):473-476
Exposure to visual patterns of high contrast (for example, gratings formed by alternating white and black bars) creates after-effects in perception. We become temporarily insensitive to faint test patterns that resemble the pre-exposed pattern (such as gratings of the same orientation), and we require more contrast to detect them. Moreover, if the test pattern is slightly tilted relative to the pre-exposed one, this tilt may be perceptually exaggerated: we experience a tilt after-effect. Here we show that these visual after-effects occur even if the pre-exposed grating is too fine to be perceptually resolved. After looking at a very fine grating, so high in spatial frequency that it was perceptually indistinguishable from a uniform field, observers required more contrast to detect a test grating presented at the same orientation than one presented at the orthogonal orientation. They also experienced a tilt after-effect that depended on the relation of the test pattern's tilt to the unseen orientation of the pre-exposed pattern. Because these after-effects are due to changes in orientation-sensitive mechanisms in visual cortex, our observations imply that extremely fine details, even those too fine to be seen, can penetrate the visual system as far as the cortex, where they are represented neurally without conscious awareness.  相似文献   

5.
von Melchner L  Pallas SL  Sur M 《Nature》2000,404(6780):871-876
An unresolved issue in cortical development concerns the relative contributions of intrinsic and extrinsic factors to the functional specification of different cortical areas. Ferrets in which retinal projections are redirected neonatally to the auditory thalamus have visually responsive cells in auditory thalamus and cortex, form a retinotopic map in auditory cortex and have visual receptive field properties in auditory cortex that are typical of cells in visual cortex. Here we report that this cross-modal projection and its representation in auditory cortex can mediate visual behaviour. When light stimuli are presented in the portion of the visual field that is 'seen' only by this projection, 'rewired' ferrets respond as though they perceive the stimuli to be visual rather than auditory. Thus the perceptual modality of a neocortical region is instructed to a significant extent by its extrinsic inputs. In addition, gratings of different spatial frequencies can be discriminated by the rewired pathway, although the grating acuity is lower than that of the normal visual pathway.  相似文献   

6.
Ohki K  Chung S  Kara P  Hübener M  Bonhoeffer T  Reid RC 《Nature》2006,442(7105):925-928
In the visual cortex of higher mammals, neurons are arranged across the cortical surface in an orderly map of preferred stimulus orientations. This map contains 'orientation pinwheels', structures that are arranged like the spokes of a wheel such that orientation changes continuously around a centre. Conventional optical imaging first demonstrated these pinwheels, but the technique lacked the spatial resolution to determine the response properties and arrangement of cells near pinwheel centres. Electrophysiological recordings later demonstrated sharply selective neurons near pinwheel centres, but it remained unclear whether they were arranged randomly or in an orderly fashion. Here we use two-photon calcium imaging in vivo to determine the microstructure of pinwheel centres in cat visual cortex with single-cell resolution. We find that pinwheel centres are highly ordered: neurons selective to different orientations are clearly segregated even in the very centre. Thus, pinwheel centres truly represent singularities in the cortical map. This highly ordered arrangement at the level of single cells suggests great precision in the development of cortical circuits underlying orientation selectivity.  相似文献   

7.
Basole A  White LE  Fitzpatrick D 《Nature》2003,423(6943):986-990
Stimulus features such as edge orientation, motion direction and spatial frequency are thought to be encoded in the primary visual cortex by overlapping feature maps arranged so that the location of neurons activated by a particular combination of stimulus features can be predicted from the intersections of these maps. This view is based on the use of grating stimuli, which limit the range of stimulus combinations that can be examined. We used optical imaging of intrinsic signals in ferrets to assess patterns of population activity evoked by the motion of a texture (a field of iso-oriented bars). Here we show that the same neural population can be activated by multiple combinations of orientation, length, motion axis and speed. Rather than reflecting the intersection of multiple maps, our results indicate that population activity in primary visual cortex is better described as a single map of spatiotemporal energy.  相似文献   

8.
Temporal hyperacuity in single neurons of electric fish   总被引:1,自引:0,他引:1  
M Kawasaki  G Rose  W Heiligenberg 《Nature》1988,336(6195):173-176
Behavioural studies have revealed that animals can resolve temporal disparities in the microsecond range. This resolution is far superior to that of individual receptors, and it must therefore be achieved through central neuronal mechanisms. It is unclear, however, whether such sensitivity ever emerges at the level of single neurons, or whether it is apparent only at the behavioural level through the collective action of many less-sensitive neurons. We have found that single neurons in the pre-pacemaker nucleus of a weakly electric fish are sensitive to temporal disparities as small as 1 microsecond, the highest temporal sensitivity ever observed at the single-neuron level. The remarkable temporal resolution of these pre-pacemaker neurons results from a high degree of spatial convergence of afferent inputs. These neurons represent the final elements of a sensory hierarchy and directly control the jamming avoidance response by which these fish regulate the frequency of their electric organ discharges.  相似文献   

9.
Mapping human visual cortex with positron emission tomography   总被引:4,自引:0,他引:4  
Positron-emission tomography (PET) can localize functions of the human brain by imaging regional cerebral blood flow (CBF) during voluntary behaviour. Functional brain mapping with PET, however, has been hindered by PET's poor spatial resolution (typically greater than 1 cm). We have developed an image-analysis strategy that can map functional zones not resolved by conventional PET images. Brain areas selectively activated by a behavioural task can be isolated by subtracting a paired control-state image from the task-state image, thereby removing areas not recruited by the task. When imaged in isolation the centre of an activated area can be located very precisely. This allows subtle shifts in response locale due to changes in task to be detected readily despite poor spatial resolution. As an initial application of this strategy we mapped the retinal projection topography of human primary visual cortex. Functional zones separated by less than 3 mm (centre-to-centre) were differentiated using PET CBF images with a spatial resolution of 18 mm. This technique is not limited to a particular brain area or type of behaviour but does require that the increase in CBF produced by the task be both intense and focal.  相似文献   

10.
基于Biot-Savart定律和空间滤波技术,采用二维傅里叶变换,研究磁场到电流的反演. 对高温超导量子干涉器(SQUID)测得的载流导线周围的磁场分布以及圆孔缺陷周围的涡流场激发的磁信号进行反演处理,并对所得的结果,特别是在傅里叶空间对截止频率的选择进行了初步探讨. 结果表明,较高的截止频率值能有效提高反演结果的空间分辨率,但增加了噪声信号对反演结果的影响;相对较低的截止频率值能更明显地去除噪声信号,同时导致反演结果的失真,降低了反演结果的空间分辨率. 利用缺陷周围的磁场数据反演出的电流分布,能够准确反映出被测样品中缺陷的位置、形状等基本情况.  相似文献   

11.
人眼动态视觉特性分析   总被引:2,自引:0,他引:2  
人眼作为电视系统的接收终端,其视沉特性直接决定着对电视系统的特性要求;也是对电视图象信号进行频带压缩处理的基础,本文基于人眼的视觉特性,提出了人眼视觉响应模型,分析了人眼动态视觉特性,分析表明,由于视觉残留的影响,人眼对活动图象的空间分辨力将降低,而对时变图象则表现为对层次的分辨力下降,其结果都降低了对单幅图象的有效息信量,从而为对视频图象信号的频带压缩提供了可能。  相似文献   

12.
Among the many neuroimaging tools available for studying human brain functions, functional magnetic resonance imaging (fMRI) is the most widely used today. One advantage of fMRI over other imaging techniques is its relatively high spatial resolution. High-resolution fMRI, with its superb signal-to-noise ratio and improved tissue-vessel specificity, has strengthened the capability of fMRI and allowed mapping of fine cortical architectures in the human brain. In this review, I will first explain the factors limiting the spatial specificity of the blood oxygenation level-dependent (BOLD) effect, based on which most of fMRI experiments are conducted, and the measures dealing with these factors, and then briefly introduce several high-resolution (sub-millimeter) studies on the functional organization of human primary visual cortex (V1), including mapping of ocular dominance columns, mapping of temporal frequency dependent domains and direct demonstration of tuning to stimulus orientation.  相似文献   

13.
Bitterman Y  Mukamel R  Malach R  Fried I  Nelken I 《Nature》2008,451(7175):197-201
Just-noticeable differences of physical parameters are often limited by the resolution of the peripheral sensory apparatus. Thus, two-point discrimination in vision is limited by the size of individual photoreceptors. Frequency selectivity is a basic property of neurons in the mammalian auditory pathway. However, just-noticeable differences of frequency are substantially smaller than the bandwidth of the peripheral sensors. Here we report that frequency tuning in single neurons recorded from human auditory cortex in response to random-chord stimuli is far narrower than that typically described in any other mammalian species (besides bats), and substantially exceeds that attributed to the human auditory periphery. Interestingly, simple spectral filter models failed to predict the neuronal responses to natural stimuli, including speech and music. Thus, natural sounds engage additional processing mechanisms beyond the exquisite frequency tuning probed by the random-chord stimuli.  相似文献   

14.
Among the many neuroimaging tools available for studying human brain functions, functional magnetic resonance imaging (fMRI) is the most widely used today. One advantage of fMRI over other imaging techniques is its relatively high spatial resolution. High-resolution fMRI, with its superb signal-to-noise ratio and improved tissue-vessel specificity, has strengthened the capability of fMRI and allowed mapping of fine cortical architectures in the human brain. In this review, I will first explain the factors limiting the spatial specificity of the blood oxygenation level-dependent (BOLD) effect, based on which most of fMRI experiments are conducted, and the measures dealing with these factors, and then briefly introduce several high-resolution (sub-millimeter) studies on the functional organization of human primary visual cortex (V1), including mapping of ocular dominance columns, mapping of temporal frequency dependent domains and direct demonstration of tuning to stimulus orientation.  相似文献   

15.
Wavelength sensitivity in blindsight   总被引:1,自引:0,他引:1  
P Stoerig  A Cowey 《Nature》1989,342(6252):916-918
Blindsight--the residual visual functions observed in visualfield defects resulting from destruction of part of the primary visual cortex (striate cortex) even though visual stimuli presented in the field defect are not consciously perceived--has generated new insights into the nature of consciousness and the role of the extrastriate pathways in visual processing. Some patients can detect and localize unseen stimuli when they are required to guess. Discrimination of movement, flicker and orientation may also be present, but residual colour discrimination is controversial. Negative results imply that only the pathways from eye to striate cortex can transmit information about colour in primates. By measuring sensitivity to light of different wavelengths in patients with blindsight we show that spectral sensitivity in the blind fields is surprisingly high, with a reduction of only 1 log unit or less across the visible spectrum. It is also essentially normal in form, whether the patients are adapted to light or dark. The shift in peak sensitivity from medium to shorter wavelengths in adaptation to the dark (the Purkinje shift) and the presence of discontinuities in the light-adapted curve together show that blindsight involves both rod and cone contributions, and that some colour opponency remains. As colour opponency requires input from primate beta retinal ganglion cells, two-thirds of which degenerate transneurally after a striate cortical lesion in juvenile monkeys, our results show that the surviving subpopulation of primate beta cells is functional.  相似文献   

16.
B Chapman  M D Jacobson  H O Reiter  M P Stryker 《Nature》1986,324(6093):154-156
Monocular lid suture during the sensitive period early in the life of a kitten disrupts normal development of inputs from the two eyes to the visual cortex, causing a decrease in the fraction of cortical cells responding to the deprived eye. Such an ocular dominance shift has been assumed to depend on patterned visual experience, because no change in cortical physiology is produced by inequalities between the two eyes in retinal illumination or temporally modulated diffuse light stimulation. A higher-level process, involving gating signals from areas outside striate cortex, has been proposed to ensure that sustained changes in synaptic efficacy occur only in response to behaviourally significant visual inputs. To test whether such a process is necessary for ocular dominance plasticity, we treated 4-week-old kittens with visual deprivation and monocular tetrodotoxin (TTX) injections to create an imbalance in the electrical activities of the two retinas in the absence of patterned vision. After 1 week of treatment we determined the ocular dominance distribution of single units in primary visual cortex. In all kittens studied, a significant ocular dominance shift was found. In addition to this physiological change, there was an anatomical change in the lateral geniculate nucleus, where cells were larger in laminae receiving input from the more active eye. Our results indicate that patterned vision is not necessary for visual cortical plasticity, and that an imbalance in spontaneous retinal activity alone can produce a significant ocular dominance shift.  相似文献   

17.
D R Badcock  T L Wong 《Nature》1990,343(6258):554-555
Human eyes are in constant and rapid motion even when observers try to maintain steady fixation. Also, the visual system has a sluggish temporal response. In combination, these two factors would be expected to blur stimuli and reduce spatial sensitivity. But observers are able to detect a difference in separation of a few seconds of arc between two closely spaced parallel lines. Here we report that even very large amounts of positional jitter of the line pair has minimal impact on this ability. This result is in marked contrast to the deterioration observed when targets are swept linearly across the retina, but is consistent with a system that must ignore oculomotor jitter. To explain these results will require a re-evaluation of current models of position coding in human vision.  相似文献   

18.
 采用基本ICA模拟视觉感知机制对自然图像分解得到的图像基函数在空间排列上是混乱的,这与视觉生理机制相互矛盾.模拟视皮层感受野间的信息整合机制,建立了新的计算模型.针对基于内容的图像故障区域检测问题,提出了相应的高效率少样本检测算法. 首先,以列车正常和故障图像序列作为训练数据,利用拓扑ICA方法学习图像基函数,由此得到的独立分量系数作为神经元响应,然后模拟同步振荡机制选择响应强烈的神经元,输出其对应的内容,最后通过自动对比实现图像故障区域的快速定位.实验结果表明,与传统方法相比较,引入视觉信息整合机制的新模型及其算法能够提高故障检测率.  相似文献   

19.
P J Bennett  M S Banks 《Nature》1987,326(6116):873-876
The ability to detect, discriminate and identify spatial stimuli is much poorer in the peripheral than in the central visual field. Some deficits are eliminated by scaling stimulus size. For example, grating detectibility is roughly constant across the visual field when spatial frequency and target extent are scaled appropriately. Other deficits persist despite scaling. For instance, some readily detectable patterns are more difficult to identify peripherally than in the fovea. This deficit is caused, at least partially, by a reduced ability to encode spatial phase (or relative position). To specify the properties of foveal and peripheral phase-encoding mechanisms, we measured discrimination thresholds for compound gratings at several eccentricities. Our observations are consistent with a two-channel model of phase encoding based on even- and odd-symmetric mechanisms (see Fig. 1), but the sensitivity of the odd-symmetric mechanisms decreases dramatically with eccentricity. Thus, the loss of sensitivity in one type of mechanism may underlie the reduced ability to encode spatial phase peripherally.  相似文献   

20.
H W?ssle  U Grünert  J R?hrenbeck  B B Boycott 《Nature》1989,341(6243):643-646
It has long been contentious whether the large representation of the fovea in the primate visual cortex (V1) indicates a selective magnification of this part of the retina, or whether it merely reflects the density of retinal ganglion cells. The measurement of the retinal ganglion-cell density is complicated by lateral displacements of cells around the fovea and the presence of displaced amacrine cells in the ganglion cell layer. We have now identified displaced amacrine cells by GABA immunohistochemistry and by retrograde degeneration of ganglion cells. By reconstructing the fovea from serial sections, we were able to compare the densities of cones, cone pedicles and ganglion cells; in this way we found that there are more than three ganglion cells per foveal cone. Between the central and the peripheral retina, the ganglion cell density changes by a factor of 1,000-2,000, which is within the range of estimates of the cortical magnification factor. There is therefore no need to postulate a selective magnification of the fovea in the geniculate and/or the visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号