共查询到18条相似文献,搜索用时 94 毫秒
1.
讨论了用Runge.Kutta方法求解带有两个延迟常量的多延迟积分微分方程du/dt=Lu(t)+M1u(t-T1)+M2u(t-T2)+K1∫5t-T1u(θ)dθ+K2∫5t-T2u(θ)dθ的数值稳定性,并给出了其渐进稳定的充分条件.这里的L,M1,M2,K1,K2都是复矩阵.特别当K1,K2=0时,亦可以得到相同的结论,即每一个A稳定的RK方法都可以证明其解的延迟独立稳定性. 相似文献
2.
讨论了一类延迟量为有界变量的非线性变延迟微分方程初值问题, 得到了带线性插值的Runge- Kutta 方法的渐近稳定性结果. 即如果Runge- Kutta 方法( A, b , c) 是( k , l) - 代数稳定的且k < 1, 那么带线性插值的该方法是GAR( 2m , l) - 稳定的. 相似文献
3.
蒋成香 《上海师范大学学报(自然科学版)》2010,39(4):344-351
主要研究了两步Runge-Kutta方法求解延迟系统方程的稳定性.首先讨论了两步Runge-Kutta方法求解常微分方程数值解的L-稳定性,给出L-稳定性的充分性条件,然后讨论延迟微分方程的GPL-稳定性,得到延迟微分方程是GPL-稳定的充要条件是它是L-稳定的. 相似文献
4.
王琦 《宁夏大学学报(自然科学版)》2011,32(4):314-317
将Runge-Kutta方法用于求解一类分片泛函多延迟微分方程,研究其数值解的稳定性.给出了其解析解的渐近稳定区域包含在其数值解的渐近稳定区域的充分必要条件.最后,用一些数值算例验证了理论结果. 相似文献
5.
对比例延迟微分方程 ,L ,M∈N×N为常矩阵 ,α∈ (0 ,1)为实常数 ,研究变步长的Runge -Kutta方法的渐近稳定性 ,证明了矩阵A非奇异的Runge -Kutta方法渐近稳定的充分必要条件是 相似文献
6.
研究了一类多延迟微分方程数值方法的散逸性问题.介绍了GD(l)-散逸性,并证明了代数稳定的Runge-Kutta方法用于此类问题时是GD(l)-散逸的.该结果表明,所考虑的数值方法继承了方程本身的散逸性. 相似文献
7.
一类求解刚性常微分方程的半隐式多步RK方法 总被引:1,自引:0,他引:1
将线性多步方法与Rosenbrok和Haines等提出的半隐式RK方法相结合,构造了一类求刚性常微分方程的半隐式多步RK方法。该方法具有A稳定性,比普通的多步RK方法稳定性更好,同时,在求解过程中不必求解非线性方程组,大大减少了计算量,和普通的半隐式RK方法相比,该方法具有更高的阶。数值结果也表明了这类方法在求解非线性刚性常微分方程方面的优越性。 相似文献
8.
研究了用Rosenbrock方法求解多延时微分方程数值解的稳定性.对于线性模型方程,分析了Rosenbrock方法的GPm-稳定性,并证明Rosenbrock方法是GPm-稳定的当且仅当它是A-稳定的. 相似文献
9.
用多步Runse-Kutta方法去解如下形式的试验方程其中y(t)=(y1(t),y2(t),…,yN(t))T,L和M是复N×N矩阵,τ>0,Φ(t)是一个已知向量函数,当t≥0时y(t)是未知的.主要解决了延时微分方程多步Runge-Kutta方法的P-稳定性. 相似文献
10.
介绍了延时微分方程组的Pm L稳定性⒚用隐式RungeKutta 方法去解如下形式的含有m 个延时量的线性试验方程组:y′(t) = ay(t) + mj= 1djy t- τj , t≥0y(t) = φ(t) , t≤0其中a,bj(j = 1,2,…,m ) ∈C,τm ≥τm - 1 ≥…≥τ1 > 0⒀φ(t) 是已知函数⒚当m = 2 时,证明隐式RungeKutta 方法是P2L稳定的充要条件是它为L稳定的⒚当m > 2 时,此结论也成立⒚ 相似文献
11.
研究Runge-Kutta方法的GPmL-稳定性,着重研究用隐式Runge-Kutta方法去解如下方程时的数值稳定性,y’=(t)=Ly(t)+M1y(t-τ1)+…+Mmy(t-τm),t≥0,y(t)=Φ(t),t<0,其中L,Mi(i=1,…,m)是N×N复矩阵,0<τ1≤τ2≤…≤τm,Φ(t)是一个已知向量函数,证明隐式RK方法是GPmL-稳定的当且仅当它是L-稳定的. 相似文献
12.
主要研究了两步Runge-Kutta方法求解非线性延迟方程的稳定性.基于(k,l)-代数稳定的两步Runge-Kutta方法.分析了非线性延迟方程的OR(l)-稳定,GAR(l)-稳定和弱GAR(l)-稳定,并在最后的两个数值算例证明了理论上的结果. 相似文献
13.
陆志雯 《上海师范大学学报(自然科学版)》2014,43(2)
研究了用Rosenbrock方法求解多延时微分方程组数值解的稳定性.Rosenbrock方法是求解刚性常微分方程的有效方法,基于Lagrange插值,借助于理论解渐近稳定的条件,对于线型方程组模型,分析了Rosenbrock方法的GPmL-稳定性,并证明了用Rosenbrock方法数值求解多延时微分方程组是GPmL-稳定的当且仅当它是L-稳定的. 相似文献
14.
针对刚性大系统,根据实际数值仿真和科学计算的需要,提出了一类并行Rosenbrock方法.该方法将不同级分配到不同的处理器上同时计算,以提高计算效率.将其用到一类延迟微分方程上,并对其稳定性及收敛性进行讨论.该方法不需要迭代,具有良好的稳定性. 相似文献
15.
从求解常微分方程(ODEs)的多导龙格-库塔方法出发,研究了求解延迟微分方程(DDEs)的多导龙格-库塔方法的渐进稳定性,得到求解DDEs的多导龙格-库塔方法的P(α)-稳定性等价于求解ODEs的多导龙格-库塔方法的A(α)-稳定性的结论,并得到一个推论:当且仅当解ODEs的多导龙格-库塔方法是A-稳定的时候,解DDEs的多导龙格-库塔方法是P-稳定的。 相似文献
16.
陆志雯 《上海师范大学学报(自然科学版)》2014,43(2):111-116
研究了用Rosenbrock方法求解多延时微分方程组数值解的稳定性.Rosenbrock方法是求解刚性常微分方程的有效方法,基于Lagrange插值,借助于理论解渐近稳定的条件,对于线型方程组模型,分析了Rosenbrock方法的GPmL-稳定性,并证明了用Rosenbrock方法数值求解多延时微分方程组是GPmL-稳定的当且仅当它是L-稳定的. 相似文献
17.
提出了求解一类随机常微分方程(SODEs)的3种Runge-Kutta格式:显式Runge-Kutta格式、半隐式Runge-Kutta格式和隐式Runge-Kutta格式.讨论了这3种Runge-Kutta格式的T稳定条件,并给出了部分数值实验结果. 相似文献
18.
研究了用Rosenbrock方法求解广义延时微分方程数值解的稳定性.证明了Rosenbrock方法是GP-稳定的当且仅当它对常微分方程是A-稳定的. 相似文献