首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 69 毫秒
1.
王雪梅  李会序 《科技信息》2011,(29):I0166-I0167,I0093
线性森林是所有分支都为路的图,图G的线性荫度la(G)也就是把图的边集分解为互不相交的线性森林的最少数量k.本文对将要讨论的不含5-圈的平面图做一些限制,这些图不含3-面与3-面相邻、4-面与4-面共用一条边的情况.设G为不含5-圈的如上述所示的平面图,则la2(G)≤(Δ(G)+1/2)+5.  相似文献   

2.
不含4-圈的平面图的线性2-荫度   总被引:1,自引:0,他引:1  
图G的线性2-荫度la2(G)是将G分解为k个边不交的森林的最小整数k,其中每个森林的分支树是长度至多为2的路.证明了:若G为不含4-圈的平面图,则la2(G)≤「Δ(G) 12﹁ 3,其中Δ(G)表示图G的点最大度.  相似文献   

3.
设图G为最大度为Δ的平面图。图G的线性2-荫度是将图G的边集合分解成k个线性森林的最小整数k,其中每个分支树为长至多为2的路,记为la2(G)。得到了平面图线性2-荫度的上界:若Δ≡0,3(mod 4),则la2(G)≤「Δ/2棢+8;若Δ≡1,2(mod 4),则la2(G)≤「Δ/2棢+7。  相似文献   

4.
设G是一个连通图且满足|E|≤|V| [3△/2]-4,则它的线性荫度la(G)=[△/2],同时得到了一个与树相关的结果。  相似文献   

5.
本文证明了:若G是Halin图,则G的线性荫度为[△(G)/2],点荫度和线性点荫度为2,路分解数等于它的奇数度顶点的一半。  相似文献   

6.
设G是不含相交4-圈的平面图.证明了若G是连通图且最小度δ(G)≥2,则G包含一条边xy使得d(x)+d(y)≤9或一个2-交错圈.由这一结果得到G的线性2-荫度la_2(G)≤「Δ/2┐+6.  相似文献   

7.
设G是不含相交5-圈的平面图,证明了如果G是连通的并且δ(G)≥2,则G包含一条边xy,使得d(x)+d(y)≤10或者一个2-交错圈。由这个结果可以得到G的线性2-荫度la2(G)≤「Δ/2+5,改进了不含5-圈的平面图的线性2-荫度的已知上界。  相似文献   

8.
设G为一简单图,它的最大平均度mad(G)=max{2|E(H)|/|V(H)|:H为G的非空子图}.如果△(G)≥7和mad(G)≤4,或者△(G)≥5和mad(G)≤18/5,或者△(G)≥3和mad(G)〈3,则G的线性荫度为[△(c)/2].  相似文献   

9.
图G的线性2-荫度la2(G)是指可以使G分解为k个边不相交森林的最小整数k, 其中森林的每个分支是长度至多为2的路。 证明了若G是4-圈不共点的平面图,则la2(G)≤「Δ/2+5。  相似文献   

10.
研究了特殊平面图的线性2-荫度问题,运用权转移等方法证明了不含相邻三角形的平面图的线性2-荫度la2(G)≤[△(G)/2]+8.所得结果改进了现有文献的相关结果.  相似文献   

11.
线性k-森林是每一个连通分支均为长度不超过k的路的图。一个图G的线性k-荫度是将图G的边集合能分解成的线性k-森林的最少数目,用lak(G)来表示。证明了:若G为不含4-圈和5-圈的平面图,则la2(G)≤「Δ(G)+1/2■+4。  相似文献   

12.
 证明了每个立方Halin图H是完备6可着色的,并且H有一个完备6-着色,使得每一种色出现在每一个面(顶点)以及与其相邻(关联)的顶点、边和面的着色集中。  相似文献   

13.
证明了两类近似Halin图的双约束边色数均满足χe/vf(G)=FM(G)。  相似文献   

14.
研究了3-正则(或立方)Halin图的完备染色,针对非轮图的3-正则Halin图,提出了一种具体的完备染色,简单确定了非轮图(Wn)的3-正则Halin图的完备色数是6,且使得3-正则Halin图的完备染色可用计算机实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号