首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Most important agronomic and quality traits of crops are quantitative in nature.The genetic variations in such traits are usually controlled by sets of genes called quantitative trait loci (QTLs),and the interactions between QTLs and the environment.It is crucial to understand the genetic architecture of complex traits to design efficient strategies for plant breeding.In the present study,a new experimental design and the corresponding statistical method are presented for QTL mapping.The proposed mapping population is composed of double backcross populations derived from backcrossing both homozygous parents to DH (double haploid) or RI (recombinant inbreeding) lines separately.Such an immortal mapping population allows for across-environment replications,and can be used to estimate dominance effects,epistatic effects,and QTL-environment interactions,remedying the drawbacks of a single backcross population.In this method,the mixed linear model approach is used to estimate the positions of QTLs and their various effects including the QTL additive,dominance,and epistatic effects,and QTL-environment interaction effects (QE).Monte Carlo simulations were conducted to investigate the performance of the proposed method and to assess the accuracy and efficiency of its estimations.The results showed that the proposed method could estimate the positions and the genetic effects of QTLs with high efficiency.  相似文献   

2.
以典型籼粳交(春江06/台中本地1号)双单倍体(DH)群体为材料,经100μmol/L CuSO4溶液对其双亲及DH群体进行处理,考察了DH群体及其双亲的耐铜性,并利用业已构建的分子连锁图谱进行了数量性状基因座(QTL)区间分析.共检测到23个QTLs,其中与铜胁迫有关的QTL有7个,分别位于水稻第1,2,3和7染色体上;贡献率最大的QTL为qTGR-2,变异解释率为14.60%,其增效等位基因来自台中本地1号;芽质量的QTL qTSW-1增效等位基因来自春江06;余下的几个耐铜胁迫的QTL增效基因均来自台中本地1号.同时,在3号染色体上检测到了一个QTL,可显示发芽率受铜胁迫抑制的程度.  相似文献   

3.
通过随机模拟,研究了群体的大小,遗传力和标记区间长度3个因素对回归法QTL作图效率的影响,结果表明:当遗传力一定时,随着群体大小的增加,QTL定位的精度逐渐增加,而加群体的大小一定时,随着遗传力的增加,QTL定位的精确度也逐渐增加,无论群体的大小和遗传力的大小如何,用回归法都能得到群体的平均值,数量性状的性效应和显性效应的精确估计值,当群体的大小和遗传力一定时,回归显性检验统计量F随着标记位点区间长度的增加而减少。  相似文献   

4.
玉米产量相关性状的QTL定位与剖析   总被引:2,自引:0,他引:2  
玉米因其自身具有高产潜质而成为了当今世界最重要的粮食作物之一.玉米产量是复杂的数量性状,由许多主/微效基因控制,易受各种环境因素影响.果穗是玉米的主要收获器官,籽粒性状是玉米品质的重要体现,因此发掘玉米穗部性状和籽粒性状相关QTL对玉米的遗传改良,培育优质高产的玉米具有重要意义.本研究白刺包谷(P2)和妻染黄(P13)为亲本构建了包含152个家系的F2∶3作图群体,选择在两亲本间具有多态性的176个微卫星标记构建遗传图谱,对产量相关性状进行了单环境的QTL定位与分析.最终定位到了14个QTL,分布在除9号染色体外的其余9条染色体上,单个QTL可解释的表型变异率为4.9%~18.8%.值得注意的是,在6号染色体上的百粒重和穗行数的一致性QTL(qHKW06-1和qERN06-1)与8号染色体上的穗行数QTL(qERN08-1)是本研究中特有的,其中qERN08-1解释了12.4%的表型变异率.  相似文献   

5.
Non-Mendelian segregation of markers, known as distorted segregation, is a common biological phenomenon. Although segregation distortion affects the estimation of map distances and the results of quantitative trait loci (QTL) mapping, the effects of distorted markers are often ignored in the construction of linkage maps and in QTL mapping. Recently, we have developed a multipoint method via a Hidden Markov chain method to reconstruct linkage maps in an F2 population that corrects for bias of map distances between distorted markers. In this article, the method is extended to cover backcross, doubled haploid and recombinant inbred line (RIL) populations. The results from simulated experiments show that: (1) the degree that two linked segregation distortion loci (SDL) affect the estimation of map distances increases as SDL heritability and interval length between adjacent markers increase, whereas sample size has little effect on the bias; (2) two linked SDL result in the underesti- mation of linkage distances for most cases, overestimation for an additive model with opposite additive effects, and unbiased estimation for an epistatic model with negative additive-by-additive effects; (3) the proposed method can obtain the unbiased estimation of linkage distance. This new method was applied to a rice RIL population with severely distorted segregation to reconstruct the linkage maps, and a bootstrap method was used to obtain 95% confidence intervals of map distances. The results from real data analysis further demonstrate the utility of our method, which provides a foundation for the inheritance analysis of quantitative and viability traits.  相似文献   

6.
In this paper, we analyzed the contribution of pure DNA factors to heterosis using quantitative trait genes (QTG) in two randomly selected strains from a recombinant inbred line of Gossypium hirsutum. According to a set of QTL mapping results, combined with analysis of DNA recombinant fragment sources in the two strains and QTL association analysis with their field traits, we hypothesize a view of “dominance + overdominance + epistasis”. That is, additive and additive epistasis may be the genetic basis of heterosis, and dominance, overdominance and epistasis may be the modes of heterosis action. Based on the heterosis results of this study, we also suggest a molecular mechanism for heterosis, and explain, in detail, with two randomly selected strains as examples. The male and female parent-derived additive epistatic QTLs of upper half mean length in LG01 and LG03 produced a trait variance of 2.99–3.52 compared with the female parent-derived loci. The trait of bolls per plant was controlled by two pairs of additive epistatic QTLs in LG02 and LG07, which were derived from both female and male parents. The QTLs were reciprocally interacted and produced a trait variance of 0.86. An initial concept of “super-hybrid cotton” was raised according to the nature of additive effect, that is genetic stability.  相似文献   

7.
Maize is one of the most important cereal crops in the world. The hybrid yield advantage is responsible for about 10 percent of the total global maize production of 550 Mt[1]. It is exigent to study the yield traits so as to improve the hybrids per se in …  相似文献   

8.
A method was proposed for the detection of outliers and influential observations in the framework of a mixed linear model, prior to the quantitative trait locus (QTL) mapping analysis. We investigated the impact of outliers on QTL mapping for complex traits in a mouse BXD population, and observed that the dropping of outliers could provide the evidence of additional QTL and epistatic loci affecting the 1 stBrain-OB and the 2ndBrain-OB in a cross of the abovementioned population. The results could also reveal a remarkable increase in estimating heritabilities of QTL in the absence of outliers. In addition, simulations were conducted to investigate the detection powers and false discovery rates (FDRs) of QTLs in the presence and absence of outliers. The results suggested that the presence of a small proportion of outliers could increase the FDR and hence decrease the detection power of QTLs. A drastic increase could be obtained in the estimates of standard errors for position, additive and additive× environment interaction effects of QTLs in the presence of outliers.  相似文献   

9.
本文系统地总结了国内外小麦品质性状QTL定位研究的主要性状、所用群体、标记类型、QTL定位所在的染色体位置及贡献率的大小,提出了小麦品质性状QTL定位中存在的问题,展望了小麦品质性状QTL定位的发展方向。  相似文献   

10.
小麦雌性育性双向极端群体QTL定位策略初探   总被引:1,自引:0,他引:1  
在极端不育群体中计算重组频率(c值)初步筛选QTL位点的基础之上,利用普通小麦中育性正常的良种藁城8901(P1)与雌性不育系XND126(P2)杂交F2群体中的189株隐性极端不育株和63株极端可育株组成的双向极端群体为定位群体,构建了连锁图,分析定位了小麦雌性育性位点taf1,获得了与F2平衡群体相同的定位位点.分析发现与taf1位点连锁较紧密的标记,其c值较小.利用极端群体的策略能快速有效的定位小麦雌性育性QTL在染色体上的位置.  相似文献   

11.
Quantitative trait loci (QTLs) controlling salt-tolerance at the seedling stage in rice (Oryza sativa L.) were identified by interval mapping (SIM) and composite interval mapping (CIM) using a doubled haploid population ZJDH and its high resolution genetic linkage map. The population was derived from an inter-subspecific cross between an indica variety Zhaiyeqing8 (ZYQ8) and a japonica variety Jingxi17 (JX17). Analysis of survival days of seedlings treated with 0.7% NaCI revealed that a major salt-tolerance quantitative trait locus (QTL), Std, was present between markers RG612 and C131 on chromosome 1 when using both MAPMAKER/QTL 1.1 and PLABQTL 1.0 (SIM). Its allele which contributes to salt-tolerance was from ZYQ8. In addition, seven more QTLs which give additive effect on salt-tolerance are identified when using PLABQTL (CIM), and most of them were from JX17.  相似文献   

12.
Many QTL mapping methods have been developed in the past two decades.Statistically,the best method should have a high detection power but a low false discovery rate (FDR).Power and FDR cannot be derived theoretically for most QTL mapping methods,but they can be properly evaluated using computer simulations.In this paper,we used four genetic models (two for independent loci and two for linked loci) to illustrate power and FDR estimation for interval mapping (IM) and inclusive composite interval mapping (ICIM).For each model,we simulated 1000 populations each of 200 doubled haploids.A support interval (SI) was first defined to indicate to which predefined QTL the significant QTL belonged.Power was calculated by counting the number of simulation runs with significant peaks higher than the logarithm of odds (LOD) threshold in the SI.Quantitative trait loci not identified in any SIs were viewed as false positives.The FDR is the rate at which QTLs are identified as significant when they are actually non-significant.Simulation results allowed us to estimate power and FDR of IM and ICIM for two independent and two linkage genetic models.Our estimates allowed us to readily compare the efficiencies of different statistical methods for QTL mapping,including the ability to separate linkage,under a wide range of genetic models.We used IM and ICIM as examples of how to estimate power and FDR,but the principles shown in this paper can be used for power analysis and comparison of any other QTL mapping methods,especially those based on interval tests.  相似文献   

13.
To enhance understanding of the genetic basis of trait correlation in rice, a recombinant inbred line (RIL) population (F6 and F7) from a cross between Zhenshan97 and HR5 was employed to identify main quantitative trait loci (QTLs) and epistatic QTL (E-QTL). Highly significant positive correlations were detected among five traits of heading date (HD), plant height (PH), panicle length (PL), flag leaf length (FLL) and flag leaf width (FLW) in 2 environments. Four to 8 main QTLs were detected for an individual trait. No E-QTL was detected for PH. One, 4, 4 and 5 E-QTLs were detected for FLL, HD, FLW and PL, respectively. Each E-QTL individually explained less than 3% of trait variation except E-QFll1. Comparison of QTL results was made in order to dissect the genetic basis of trait correlation. We found that main QTLs with pleiotropic effects and QTL clusters were the main genetic basis of trait correlation. No E-QTL had pleiotropic effects. E-QTL played an important role in the genetic basis of individual trait, but it made a little contribution to trait correlation.  相似文献   

14.
The component and amount of nutrient in the growth medium are the major factors affecting root growth.For the systematic dissection of root gene expression,evaluation of nutrient and non-nutrient solutions was conducted for their effect on root traits and quantitative trait loci(QTL)mapping.Three rice root parameters,maximum root length(MRL),root dry weight(RDW),and root/ shoot ratio of dry weight(RSR),were characterized within a double haploid(DH)population from a cross of ZYQ8(indica)and JX17(japonica).The value of the three root traits in two parents all decreased under the nutrient condition compared to those under the nonnutrient condition,of which RSR decreased up to 2.6-fold on average.In the DH population,more than 70 % lines in MRL,94 % lines in RDW,and all the lines in RSR were scored lower.In total,eight QTLs were identified in nutrient system(5 from JX17 alleles and 3 from ZYQ8 alleles)while five QTLs were detected in non-nutrient system(4 from JX17 alleles and 1 from ZYQ8 alleles).Of them,one QTL for RSR was shared by both culturing systems,seven QTLs were specific in nutrient system and the other four QTLs were specific in non-nutrient system.All 13 QTLs were distributed over 7 rice chromosomes-2,3,4,5,6,9 and 10,respectively.  相似文献   

15.
To understand genetic patterns of the morphological and physiological traits in flag leaf of barley, a double haploid (DH) population derived from the parents Yerong and Franklin was used to determine quantitative trait loci (QTL) controlling length, width, length/width, and chlorophyll content of flag leaves. A total of 9 QTLs showing significantly additive effect were detected in 8 intervals on 5 chromosomes. The variation of individual QTL ranged from 1.9% to 20.2%. For chlorophyll content expressed as SPAD value, 4 QTLs were identified on chromosomes 2H, 3H and 6H; for leaf length and width, 2 QTLs located on chromosomes 5H and 7H, and 2 QTLs located on chromosome 5H were detected; and for length/width, I QTL was detected on chromosome 7H. The identification of these QTLs associated with the properties of flag leaf is useful for barley improvement in breeding programs.  相似文献   

16.
Heterosis represents one of the most revolutionary advancements in crop improvement.In the genetic dissection of heterosis,NCIII design is one of the most powerful and widely used mating schemes.However,the methodologies for quantitative trait loci (QTL) detection in the design were mostly based on composite interval mapping.Therefore,in this study,our purpose was to develop a statistical method for mapping epistatic QTL associated with heterosis in the RIL-based NCIII design.First,we derivated the expectations of two classical linear transformations,Z 1 and Z 2,while a quantitative trait was controlled by two QTL with digenic epistasis and arbitrary linkage under the F ∞ and F 2 metric models.Then,we constructed an epistatic genetic model that includes all markers on the whole genome simultaneously,and estimated all the parameters in the model by the empirical Bayes approach.Finally,a series of Monte Carlo simulation experiments was carried out to confirm the proposed approach.The results show that:(1) all the augmented genetic parameters for main-effect QTL could be rightly identified with satisfactory statistical power and precision;(2) the statistical powers in the detection of augmented epistatic effects were substantively affected by the signs of pure epistatic effects;(3) it is more difficult to detect epistatic QTL than to detect main-effect QTL;(4) statistical power is higher in the RIL-based NCIII design than in the F 2-based NCIII design,especially in the detection of the augmented epistatic effect that consists of two pure epistatic effects in opposite directions.  相似文献   

17.
In this study, we used 127 double haploid (DH) lines to analyze agricultural traits of rice. The DH lines, derived from a ZYQ8 (indica)/JX17 (japonica) cross by anther culture, contained 160 RFLP and 83 SSR markers. Unconditional and conditional quantitative trait loci (QTL) mapping was conducted to analyze plant height (PH) and tillers per plant (TP) at ?ve growth stages that were grown at two nitrogen levels. Fourteen PH and 13 TP unconditional QTL were identified in the di?erent growth stages, including 19 QTL from high-nitrogen (HN) and 14 QTL from low-nitrogen (LN) conditions. The conditional QTL for 14 genomic regions under LN/HN conditions showed that there was a significant effect on PH and TP across the different stages. Only one conditional QTL, ph2-3, was unable to be detected in unconditional mapping. More QTL were detected in the ?rst four rice growth stages than in the final stage. Furthermore, a line from the DH mapping population, DH78, was identified in extreme phenotypes of PH and TP that exhibited dwarfism and less-tiller (dft) characters. The gene dft1 was mapped to chromosome 2 using a backcrossed population of DH78/JX17 through a mapbased cloning strategy. The location of dft1 coincided with the mapping region of the small-LOD peak, QTL ph2 and tp2, which were identified in plants grown in low-nitrogen conditions. Further backcrossing and fine-mapping successfully delimited the dft1 locus to a 91 kb region.  相似文献   

18.
In this study,we used 127 double haploid (DH) lines to analyze agricultural traits of rice.The DH lines,derived from a ZYQ8 (indica)/JX17 (japonica) cross by anther culture,contained 160 RFLP and 83 SSR markers.Unconditional and conditional quantitative trait loci (QTL) mapping was conducted to analyze plant height (PH) and tillers per plant (TP) at five growth stages that were grown at two nitrogen levels.Fourteen PH and 13 TP unconditional QTL were identified in the different growth stages,including 19 QTL from high-nitrogen (HN) and 14 QTL from low-nitrogen (LN) conditions.The conditional QTL for 14 genomic regions under LN/HN con-ditions showed that there was a significant effect on PH and TP across the different stages.Only one conditional QTL,ph2-3,was unable to be detected in unconditional mapping.More QTL were detected in the first four rice growth stages than in the final stage.Further-more,a line from the DH mapping population,DH78,was identified in extreme phenotypes of PH and TP that exhibited dwarfism and less-tiller (dft) characters.The gene dftl was mapped to chromosome 2 using a backcrossed population of DH78/JX17 through a map-based cloning strategy.The location of dftl coincided with the mapping region of the small-LOD peak,QTL ph2 and tp2,which were identified in plants grown in low-nitrogen conditions.Further backcrossing and fine-mapping successfully delimited the dftl locus to a 91 kb region.  相似文献   

19.
利用基于混合模型的QTL定位方法,可以分析水稻DH群体在4个年份下剑叶宽度的QTL及其上位性效应和环境互作效应.结果发现,QTL除了具有自身的效应外,还可以参与上位性效应的形成,一个QTL可与多个QTL发生互作,可能起到诱发和修饰其他位点的作用.QTL与环境的互作效应以及上位性与环境的互作效应更多地被检测到,表明控制剑叶宽度的遗传因素易受环境影响.  相似文献   

20.
The theoretical foundation for mapping quantitative trait loci (QTL) was laid by Sax[1] who discovered the association between the segregation pattern of pigment markers with seed size of bean. However, statistical methods were not well developed until th…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号