首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relative to the CI chondrite class of meteorites (widely thought to be the 'building blocks' of the terrestrial planets), the Earth is depleted in volatile elements. For most elements this depletion is thought to be a solar nebular signature, as chondrites show depletions qualitatively similar to that of the Earth. On the other hand, as lead is a volatile element, some Pb may also have been lost after accretion. The unique (206)Pb/(204)Pb and (207)Pb/(204)Pb ratios of the Earth's mantle suggest that some lead was lost about 50 to 130 Myr after Solar System formation. This has commonly been explained by lead lost via the segregation of a sulphide melt to the Earth's core, which assumes that lead has an affinity towards sulphide. Some models, however, have reconciled the Earth's lead deficit with volatilization. Whichever model is preferred, the broad coincidence of U-Pb model ages with the age of the Moon suggests that lead loss may be related to the Moon-forming impact. Here we report partitioning experiments in metal-sulphide-silicate systems. We show that lead is neither siderophile nor chalcophile enough to explain the high U/Pb ratio of the Earth's mantle as being a result of lead pumping to the core. The Earth may have accreted from initially volatile-depleted material, some lead may have been lost to degassing following the Moon-forming giant impact, or a hidden reservoir exists in the deep mantle with lead isotope compositions complementary to upper-mantle values; it is unlikely though that the missing lead resides in the core.  相似文献   

2.
3.
Silicon in the Earth's core   总被引:2,自引:0,他引:2  
Georg RB  Halliday AN  Schauble EA  Reynolds BC 《Nature》2007,447(7148):1102-1106
Small isotopic differences between the silicate minerals in planets may have developed as a result of processes associated with core formation, or from evaporative losses during accretion as the planets were built up. Basalts from the Earth and the Moon do indeed appear to have iron isotopic compositions that are slightly heavy relative to those from Mars, Vesta and primitive undifferentiated meteorites (chondrites). Explanations for these differences have included evaporation during the 'giant impact' that created the Moon (when a Mars-sized body collided with the young Earth). However, lithium and magnesium, lighter elements with comparable volatility, reveal no such differences, rendering evaporation unlikely as an explanation. Here we show that the silicon isotopic compositions of basaltic rocks from the Earth and the Moon are also distinctly heavy. A likely cause is that silicon is one of the light elements in the Earth's core. We show that both the direction and magnitude of the silicon isotopic effect are in accord with current theory based on the stiffness of bonding in metal and silicate. The similar isotopic composition of the bulk silicate Earth and the Moon is consistent with the recent proposal that there was large-scale isotopic equilibration during the giant impact. We conclude that Si was already incorporated as a light element in the Earth's core before the Moon formed.  相似文献   

4.
《Nature》1971,233(5318):307
  相似文献   

5.
 在整个外地核空间内流体的对流存在狭窄的上升流通道(浮力团块上升至顶部)和宽阔的下降流通道(周围液体缓慢下降),假定这种对流循环相当快,以至于外地核接近于一个混合良好的等熵态,而各种物理量的偏离可以看作等熵态下的微扰.根据这一对流模型给出了外地核内下降部分物质的组分、温度、压力等状态参数的空间变化方程,以及与之密切相关的径向流体速度方程,并定性分析了各参量对外地核下降流体分层稳定性的贡献.  相似文献   

6.
Vidale JE  Earle PS 《Nature》2000,404(6775):273-275
The seismological properties of the Earth's inner core have become of particular interest as we understand more about its composition and thermal state. Observations of anisotropy and velocity heterogeneity in the inner core are beginning to reveal how it has grown and whether it convects. The attenuation of seismic waves in the inner core is strong, and studies of seismic body waves have found that this high attenuation is consistent with either scattering or intrinsic attenuation. The outermost portion of the inner core has been inferred to possess layering and to be less anisotropic than at greater depths. Here we present observations of seismic waves scattered in the inner core which follow the expected arrival time of the body-wave reflection from the inner-core boundary. The amplitude of these scattered waves can be explained by stiffness variations of 1.2% with a scale length of 2 kilometres across the outermost 300 km of the inner core. These variations might be caused by variations in composition, by pods of partial melt in a mostly solid matrix or by variations in the orientation or strength of seismic anisotropy.  相似文献   

7.
地核物质的状态方程和参数   总被引:1,自引:1,他引:0  
 解释了3种地核物质状态方程的异同,验证了Vinet et al. EOS(equation of state)比Shanker et al.EOS更接近Stacy EOS的结论,后者与高压极限的热动力学一致、而且与来源于地震波的数据完全匹配;同时与地震波测量数据进行了对照;给出了内核边界压力下物质摩尔体积随温度的变化函数,预言了密度亏损的温度变化.这对于揭示地球深部物质特性、研究地核内的轻物质组分以及深部动力学原理具有重要意义.  相似文献   

8.
Melting of the Earth's inner core   总被引:2,自引:0,他引:2  
Gubbins D  Sreenivasan B  Mound J  Rost S 《Nature》2011,473(7347):361-363
The Earth's magnetic field is generated by a dynamo in the liquid iron core, which convects in response to cooling of the overlying rocky mantle. The core freezes from the innermost surface outward, growing the solid inner core and releasing light elements that drive compositional convection. Mantle convection extracts heat from the core at a rate that has enormous lateral variations. Here we use geodynamo simulations to show that these variations are transferred to the inner-core boundary and can be large enough to cause heat to flow into the inner core. If this were to occur in the Earth, it would cause localized melting. Melting releases heavy liquid that could form the variable-composition layer suggested by an anomaly in seismic velocity in the 150 kilometres immediately above the inner-core boundary. This provides a very simple explanation of the existence of this layer, which otherwise requires additional assumptions such as locking of the inner core to the mantle, translation from its geopotential centre or convection with temperature equal to the solidus but with composition varying from the outer to the inner core. The predominantly narrow downwellings associated with freezing and broad upwellings associated with melting mean that the area of melting could be quite large despite the average dominance of freezing necessary to keep the dynamo going. Localized melting and freezing also provides a strong mechanism for creating seismic anomalies in the inner core itself, much stronger than the effects of variations in heat flow so far considered.  相似文献   

9.
Seismic waves reflected from the Earth's inner core   总被引:1,自引:0,他引:1  
Engdahl ER  Flinn EA  Romney CF 《Nature》1970,228(5274):852-853
  相似文献   

10.
The plastic deformation of iron at pressures of the Earth's inner core   总被引:1,自引:0,他引:1  
Wenk HR  Matthies S  Hemley RJ  Mao HK  Shu J 《Nature》2000,405(6790):1044-1047
Soon after the discovery of seismic anisotropy in the Earth's inner core, it was suggested that crystal alignment attained during deformation might be responsible. Since then, several other mechanisms have been proposed to account for the observed anisotropy, but the lack of deformation experiments performed at the extreme pressure conditions corresponding to the solid inner core has limited our ability to determine which deformation mechanism applies to this region of the Earth. Here we determine directly the elastic and plastic deformation mechanism of iron at pressures of the Earth's core, from synchrotron X-ray diffraction measurements of iron, under imposed axial stress, in diamond-anvil cells. The epsilon-iron (hexagonally close packed) crystals display strong preferred orientation, with c-axes parallel to the axis of the diamond-anvil cell. Polycrystal plasticity theory predicts an alignment of c-axes parallel to the compression direction as a result of basal slip, if basal slip is either the primary or a secondary slip system. The experiments provide direct observations of deformation mechanisms that occur in the Earth's inner core, and introduce a method for investigating, within the laboratory, the rheology of materials at extreme pressures.  相似文献   

11.
Belonoshko AB  Ahuja R  Johansson B 《Nature》2003,424(6952):1032-1034
Iron is thought to be the main constituent of the Earth's core, and considerable efforts have therefore been made to understand its properties at high pressure and temperature. While these efforts have expanded our knowledge of the iron phase diagram, there remain some significant inconsistencies, the most notable being the difference between the 'low' and 'high' melting curves. Here we report the results of molecular dynamics simulations of iron based on embedded atom models fitted to the results of two implementations of density functional theory. We tested two model approximations and found that both point to the stability of the body-centred-cubic (b.c.c.) iron phase at high temperature and pressure. Our calculated melting curve is in agreement with the 'high' melting curve, but our calculated phase boundary between the hexagonal close packed (h.c.p.) and b.c.c. iron phases is in good agreement with the 'low' melting curve. We suggest that the h.c.p.-b.c.c. transition was previously misinterpreted as a melting transition, similar to the case of xenon, and that the b.c.c. phase of iron is the stable phase in the Earth's inner core.  相似文献   

12.
B A Buffett  H R Wenk 《Nature》2001,413(6851):60-63
Elastic anisotropy in the Earth's inner core has been attributed to a preferred lattice orientation, which may be acquired during solidification of the inner core or developed subsequent to solidification as a result of plastic deformation. But solidification texturing alone cannot explain the observed depth dependence of anisotropy, and previous suggestions for possible deformation processes have all relied on radial flow, which is inhibited by thermal and chemical stratification. Here we investigate the development of anisotropy as the inner core deforms plastically under the influence of electromagnetic (Maxwell) shear stresses. We estimate the flow caused by a representative magnetic field using polycrystal plasticity simulations for epsilon-iron, where the imposed deformation is accommodated by basal and prismatic slip. We find that individual grains in an initially random polycrystal become preferentially oriented with their c axes parallel to the equatorial plane. This pattern is accentuated if deformation is accompanied by recrystallization. Using the single-crystal elastic properties of epsilon-iron at core pressure and temperature, we average over the simulated orientation distribution to obtain a pattern of elastic anisotropy which is similar to that observed seismologically.  相似文献   

13.
Jackson A 《Nature》2003,424(6950):760-763
A large number of high-accuracy vector measurements of the Earth's magnetic field have recently become available from the satellite Oersted, complementing previous vector data from the satellite Magsat, which operated in 1979/80. These data can be used to infer the morphology of the magnetic field at the surface of the fluid core, approximately 2,900 km below the Earth's surface. Here I apply a new methodology to these data to calculate maps of the magnetic field at the core surface which show intense flux spots in equatorial regions. The intensity of these features is unusually large--some have intensities comparable to high-latitude flux patches near the poles, previously identified as the major component of the dynamo field. The tendency for pairing of some of these spots to the north and south of the geographical equator suggests they might be associated with the tops of equatorially symmetric columnar structures in the fluid, or their antisymmetric equivalents. The drift of the equatorial features may represent material flow or could represent wave motion; discrimination of these two effects based on future data could provide new information on the strength of the hidden toroidal magnetic field of the Earth.  相似文献   

14.
Vocadlo L  Alfè D  Gillan MJ  Wood IG  Brodholt JP  Price GD 《Nature》2003,424(6948):536-539
The nature of the stable phase of iron in the Earth's solid inner core is still highly controversial. Laboratory experiments suggest the possibility of an uncharacterized phase transformation in iron at core conditions and seismological observations have indicated the possible presence of complex, inner-core layering. Theoretical studies currently suggest that the hexagonal close packed (h.c.p.) phase of iron is stable at core pressures and that the body centred cubic (b.c.c.) phase of iron becomes elastically unstable at high pressure. In other h.c.p. metals, however, a high-pressure b.c.c. form has been found to become stabilized at high temperature. We report here a quantum mechanical study of b.c.c.-iron able to model its behaviour at core temperatures as well as pressures, using ab initio molecular dynamics free-energy calculations. We find that b.c.c.-iron indeed becomes entropically stabilized at core temperatures, but in its pure state h.c.p.-iron still remains thermodynamically more favourable. The inner core, however, is not pure iron, and our calculations indicate that the b.c.c. phase will be stabilized with respect to the h.c.p. phase by sulphur or silicon impurities in the core. Consequently, a b.c.c.-structured alloy may be a strong candidate for explaining the observed seismic complexity of the inner core.  相似文献   

15.
Melting of iron at the physical conditions of the Earth's core   总被引:1,自引:0,他引:1  
Nguyen JH  Holmes NC 《Nature》2004,427(6972):339-342
Seismological data can yield physical properties of the Earth's core, such as its size and seismic anisotropy. A well-constrained iron phase diagram, however, is essential to determine the temperatures at core boundaries and the crystal structure of the solid inner core. To date, the iron phase diagram at high pressure has been investigated experimentally through both laser-heated diamond-anvil cell and shock-compression techniques, as well as through theoretical calculations. Despite these contributions, a consensus on the melt line or the high-pressure, high-temperature phase of iron is lacking. Here we report new and re-analysed sound velocity measurements of shock-compressed iron at Earth-core conditions. We show that melting starts at 225 +/- 3 GPa (5,100 +/- 500 K) and is complete at 260 +/- 3 GPa (6,100 +/- 500 K), both on the Hugoniot curve-the locus of shock-compressed states. This new melting pressure is lower than previously reported, and we find no evidence for a previously reported solid-solid phase transition on the Hugoniot curve near 200 GPa (ref. 16).  相似文献   

16.
Niu F  Wen L 《Nature》2001,410(6832):1081-1084
Knowledge of the seismic velocity structure at the top of the Earth's inner core is important for deciphering the physical processes responsible for inner-core growth. Previous global seismic studies have focused on structures found 100 km or deeper within the inner core, with results for the uppermost 100 km available for only isolated regions. Here we present constraints on seismic velocity variations just beneath the inner-core boundary, determined from the difference in travel time between waves reflected at the inner-core boundary and those transmitted through the inner core. We found that these travel-time residuals-observed on both global seismograph stations and several regional seismic networks-are systematically larger, by about 0.8 s, for waves that sample the 'eastern hemisphere' of the inner core (40 degrees E to 180 degrees E) compared to those that sample the 'western hemisphere' (180 degrees W to 40 degrees E). These residuals show no correlation with the angle at which the waves traverse the inner core; this indicates that seismic anisotropy is not strong in this region and that the isotropic seismic velocity of the eastern hemisphere is about 0.8% higher than that of the western hemisphere.  相似文献   

17.
The number of baryons detected in the low-redshift (z < 1) Universe is far smaller than the number detected in corresponding volumes at higher redshifts. Simulations of the formation of structure in the Universe show that up to two-thirds of the 'missing' baryons may have escaped detection because of their high temperature and low density. One of the few ways to detect this matter directly is to look for its signature in the form of ultraviolet absorption lines in the spectra of background sources such as quasars. Here we show that the amplitude of the average velocity vector of 'high velocity' O vi (O5+) absorption clouds detected in a survey of ultraviolet emission from active galactic nuclei decreases significantly when the vector is transformed to the frames of the Galactic Standard of Rest and the Local Group of galaxies. At least 82 per cent of these absorbers are not associated with any 'high velocity' atomic hydrogen complex in our Galaxy, and are therefore likely to result from a primordial warm-hot intergalactic medium pervading an extended corona around the Milky Way or the Local Group. The total mass of baryons in this medium is estimated to be up to approximately 10(12) solar masses, which is of the order of the mass required to dynamically stabilize the Local Group.  相似文献   

18.
Aubert J  Amit H  Hulot G  Olson P 《Nature》2008,454(7205):758-761
Seismic waves sampling the top 100 km of the Earth's inner core reveal that the eastern hemisphere (40 degrees E-180 degrees E) is seismically faster, more isotropic and more attenuating than the western hemisphere. The origin of this hemispherical dichotomy is a challenging problem for our understanding of the Earth as a system of dynamically coupled layers. Previously, laboratory experiments have established that thermal control from the lower mantle can drastically affect fluid flow in the outer core, which in turn can induce textural heterogeneity on the inner core solidification front. The resulting texture should be consistent with other expected manifestations of thermal mantle control on the geodynamo, specifically magnetic flux concentrations in the time-average palaeomagnetic field over the past 5 Myr, and preferred eddy locations in flows imaged below the core-mantle boundary by the analysis of historical geomagnetic secular variation. Here we show that a single model of thermochemical convection and dynamo action can account for all these effects by producing a large-scale, long-term outer core flow that couples the heterogeneity of the inner core with that of the lower mantle. The main feature of this thermochemical 'wind' is a cyclonic circulation below Asia, which concentrates magnetic field on the core-mantle boundary at the observed location and locally agrees with core flow images. This wind also causes anomalously high rates of light element release in the eastern hemisphere of the inner core boundary, suggesting that lateral seismic anomalies at the top of the inner core result from mantle-induced variations in its freezing rate.  相似文献   

19.
Alfe D  Gillan MJ  Price GD 《Nature》2000,405(6783):172-175
Knowledge of the composition of the Earth's core is important for understanding its melting point and therefore the temperature at the inner-core boundary and the temperature profile of the core and mantle. In addition, the partitioning of light elements between solid and liquid, as the outer core freezes at the inner-core boundary, is believed to drive compositional convection, which in turn generates the Earth's magnetic field. It is generally accepted that the liquid outer core and the solid inner core consist mainly of iron. The outer core, however, is also thought to contain a significant fraction of light elements, because its density--as deduced from seismological data and other measurements--is 6-10 per cent less than that estimated for pure liquid iron. Similar evidence indicates a smaller but still appreciable fraction of light elements in the inner core. The leading candidates for the light elements present in the core are sulphur, oxygen and silicon. Here we obtain a constraint on core composition derived from ab initio calculation of the chemical potentials of light elements dissolved in solid and liquid iron. We present results for the case of sulphur, which provide strong evidence against the proposal that the outer core is close to being a binary iron-sulphur mixture.  相似文献   

20.
Seismological body-wave and free-oscillation studies of the Earth's solid inner core have revealed that compressional waves traverse the inner core faster along near-polar paths than in the equatorial plane. Studies have also documented local deviations from this first-order pattern of anisotropy on length scales ranging from 1 to 1,000 km (refs 3, 4). These observations, together with reports of the differential rotation of the inner core, have generated considerable interest in the physical state and dynamics of the inner core, and in the structure and elasticity of its main constituent, iron, at appropriate conditions of pressure and temperature. Here we report first-principles calculations of the structure and elasticity of dense hexagonal close-packed (h.c.p.) iron at high temperatures. We find that the axial ratio c/a of h.c.p. iron increases substantially with increasing temperature, reaching a value of nearly 1.7 at a temperature of 5,700 K, where aggregate bulk and shear moduli match those of the inner core. As a consequence of the increasing c/a ratio, we have found that the single-crystal longitudinal anisotropy of h.c.p. iron at high temperature has the opposite sense from that at low temperature. By combining our results with a simple model of polycrystalline texture in the inner core, in which basal planes are partially aligned with the rotation axis, we can account for seismological observations of inner-core anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号