首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
基于闭环DNA的边着色问题DNA算法   总被引:11,自引:4,他引:7  
提出一种新的DNA计算模型——闭环DNA计算模型。引进了批删除实验。讨论了其实现过程;提出并证明了边着色问题的基本定理,设计并实现了闭环DNA计算算法.该算法将边的DNA编码分为两部分,一部分存储边和色位置的二维数据,另一部分存储色号值;在DNA计算的主体部分用批删除实验得到全部正常的边着色,并通过电泳实验和检测实验获得χ′^-正常边着色.举例说明了算法的有效性和可行性.  相似文献   

2.
DNA计算是一种新的并行计算模式,在解决NP完全问题等方面具有很大的优越性.利用DNA计算的计算特性给出了一个图的k着色问题的DNA计算模型,该算法最多需要3kn(n-1)/2+6个生物操作即可求出图的色数及相应的着色模式.  相似文献   

3.
色数是图论中的一个重要的参数,其属于著名NP(Non-deterministic Polynomial)-完全问题范畴.巨量的着色方案使验证变得相当困难,以至于在传统计算机上无法实现.目前已经有多种算法用于研究图定点着色问题,比如遗传算法,粒子群算法,神经网络算法和模拟退火算法等.随着DNA自组装技术与DNA计算机研究的展开,一些NP-完全问题以及NP-难问题的计算模型被相继提出.除了传统的DNA分子结构被用作计算材料外,其他的DNA分子结构也被用于分子生物计算,比如质粒DNA分子、分子信标结构以及DNA Tile等.采用DNA纳米折纸结构编码信息,借助于纳米结构之间的粘性末端进行自组装,给出了一种非确定性的图着色模型.通过创建数以亿计的参与计算的DNA纳米折纸结构,该算法可以并行的测试每种可能的着色方案.  相似文献   

4.
图的着色问题是著名的NP问题,有着重要的实际意义。比如通讯系统的频道分配、考试排考场问题等方面有直接应用。图的着色问题采用DNA计算方法很多,有表面DNA计算,粘贴DNA计算。本文提出质粒DNA计算,首先把顶点着色问题转化为求最大独立集问题,然后给出了图顶点着色问题的质粒DNA分子生物实验,利用限制性内切酶的特性切割有边相连的顶点,得到最大独立集,在试验中特别引入了一个备用试管,最后给出一个具体的实例。实例给出具体的着色方案,证明了该质粒DNA算法有效并且是可行的。  相似文献   

5.
提出多级分离的概念,给出一个多级分离装置的模型,并介绍粘贴模型中的多级分离操作、将地图着色问题转化为可满足性问题、基于粘贴模型的巨大并行性及多级分离的优势,提出解决该问题的粘贴DNA算法。通过一个实例给出实验操作步骤,并对生化反应过程进行模拟,得出具体的着色方案,从而证明了该多级分离装置的有效性以及该算法的可行性。  相似文献   

6.
针对目前存在的解决图顶点着色问题的DNA算法或DNA编码量过大或复杂度太高的问题,为了提高解题效率,将多级分离技术应用到图顶点着色问题的求解中,对解决该问题原有粘贴DNA算法加以改进;改进后的算法减少了操作步骤,达到了预期目的;最后,通过对一个实例的模拟,说明了改进算法的可行性.  相似文献   

7.
介绍了DNA计算在图论中应用的一些结果.如中国邮递员问题的DNA计算模型;0-1规划的DNA计算模型最大团问题;图着色问题和最小覆盖问题的表面DNA计算模型等.  相似文献   

8.
应用思维进化计算求解顶点着色问题,给出求解给定图的色数、最小着色的算法。介绍了顶点着色问题的编码与解码方法、特征、信息矩阵的概念,从而应用思维进化计算的趋同和异化求解该问题。实验结果表明该算法是求解顶点着色问题的一种新的有效算法。  相似文献   

9.
孟利冬  郭丽峰  江浩  褚衍东 《科技信息》2009,(32):I0104-I0105
DNA计算是以DNA分子作为数据的一种新型计算模式,在DNA计算中首要面对的问题是编码问题。文中提出了一种双编码方法,利用这种编码方法使得在DNA计算的读解过程类似于DNA测序过程,容易实现自动化操作。基于该编码方法所建立的DNA计算模型可用于求解整数规划问题,只需有限的几次PCK反应即可读取问题的可行解。与其他DNA算法相比,该算法具有操作简单、易于实现的优点。  相似文献   

10.
为有效求解最短路径问题, 避免传统算法计算量大、 求解时间长的问题, 充分发挥DNA(Deoxyribo Nuclec Acid)计算的并行性在求解复杂计算问题的优势, 提出一种基于k-臂分子和粘贴计算求解最短路径问题的DNA计算模型, 阐述了顶点、边及权值的编码方案, 描述了求解最短路径的DNA算法, 经验证, 该模型对求解最短路径问题是有效的。  相似文献   

11.
Using a small quantity of DNA molecules and little experimental time to solve complex problems successfully is a goal of DNA computing. Some NP-hard problems have been solved by DNA computing with lower time complexity than conventional computing. However, this advantage often brings higher space complexity and needs a large number of DNA encoding molecules. One example is graph coloring problem. Current DNA algorithms need exponentially increasing DNA encoding strands with the growing of problem size. Here we propose a new DNA algorithm of graph coloring problem based on the proof of four-color theorem. This algorithm has good properties of needing a relatively small number of operations in polynomial time and needing a small number of DNA encoding molecules (we need only 6R DNA encoding molecules if the number of regions in a graph is R).  相似文献   

12.
A new DNA algorithm to solve graph coloring problem   总被引:1,自引:0,他引:1  
Using a small quantity of DNA molecules and little experimental time to solve complex problems successfully is a goal of DNA computing. Some NP-hard problems have been solved by DNA computing with lower time complexity than conventional computing. However, this advantage often brings higher space complexity and needs a large number of DNA encoding molecules. One example is graph coloring problem. Current DNA algorithms need exponentially increasing DNA encoding strands with the growing of problem size. Here we propose a new DNA algorithm of graph coloring problem based on the proof of four-color theorem. This algorithm has good properties of needing a relatively small number of operations in polynomial time and needing a small number of DNA encoding molecules (we need only 6R DNA encoding molecules if the number of regions in a graph is R).  相似文献   

13.
Solid phase based DNA solution of the coloring problem   总被引:7,自引:0,他引:7  
DNA computing has the potential to tackle computationally difficult problems that have real-world implications.The parallel search capabilities of DNA make it a valuable tool for approaching intractable computational problems,for which conventional computers have limited potentials.Up to now,many accomplishments have been achieved to improve its performance and increase its reliability.In this paper,the coloring problem has been solved by means of molecular biology techniques.The coloring problem is a well-known NP-complete problem.This work represents further evidence for the ability of DNA computing to solve NP-complete problems.  相似文献   

14.
作为自组装DNA计算领域中一门新技术,DNA链置换反应在分子计算领域得到了广泛的应用.基于自组装DNA计算原理,设计了对应不同逻辑门的DNA分子电路.基于DNA链置换反应机理构建了编码器逻辑电路的分子计算模型.当输入DNA分子信号链时,将不同分子浓度比的DNA分子逻辑门电路混合,借助分子间的特异性杂交反应及分子间链置换反应,最终可输出信号链分子.Visual DSD仿真结果表明了本文设计的编码器逻辑计算模型的可行性与准确性.为拓展分子逻辑电路的应用做出有益的探索.  相似文献   

15.
基于粘贴和删除系统求解旅行商问题的DNA算法   总被引:1,自引:1,他引:0  
旅行商问题(Traveling Salesman Problem,TSP)是一个典型的NP完全问题.粘贴和删除模型是DNA计算的两个基本计算模型.结合上述两个模型的优点,构造粘贴-删除模型,并利用该模型给出求解旅行商问题一种新的DNA算法.  相似文献   

16.
在面向计算部署到数据节点端执行的分布式并行环境下,提出一种基于图着色理论的适用于矢量空间数据的部署方法,将空间数据粒度的部署问题转化为图顶点着色的过程,提高了任意空间区域的信息查询效率.给出基于图着色理论的数据部署方法,并通过节点的任务量进一步改进算法,使得该算法可实现海量空间数据粒度的离散化部署,提高了空间数据检索和查询的并行化程度,充分利用了并行计算资源.  相似文献   

17.
在分子计算原理和传统计算机模型基础上,提出了一种新的基于图灵机的广义分子计算模型,又称广义图灵模型,该模型的具体实现不依赖于特定生物技术. 模型继承分子计算大存储高并行的特点,通过时空复杂度转换,在求解NP完全问题上具有通用性. 模型由一台基本图灵机、一个只写带和一条工作带及读写网络这3部分组成,其中只写带和工作带之间存在一种特殊拓扑映射. 通过数据规模为4的集合覆盖问题,证明该算法能在多项式时间内求解集合覆盖问题,验证了算法和模型的有效性.  相似文献   

18.
A DNA based model for addition computation   总被引:4,自引:0,他引:4  
Much effort has been made to solve computing problems by using DNA-an organic simulating method, which in some cases is preferable to the current electronic computer. However, No one at present has proposed an effective and applicable method to solve addition problem with molecular algorithm due to the difficulty in solving the carry problem which can be easily solved by hardware of an electronic computer. In this article, we solved this problem by employing two kinds of DNA strings, one is called result and operation string while the other is named carrier. The result and operation string contains some carry information by its own and denotes the ultimate result while the carrier is just for carrying use. The significance of this algorithm is the original code, the fairly easy steps to follow and the feasibility under current molecular biological technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号