首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two-dimensional electrophoretic analysis was used to assess quantitative and qualitative changes in the expression and tyrosine phosphorylation of cytoplasmic proteins of proliferating, differentiating HL-60 cells and mature human blood neutrophils. The total tyrosine phosphorylation level of cytoplasmic proteins appeared approximately constant during the pre-commitment period, i.e., 6-24 h after induction of differentiation by 700 nM all-trans retinoic acid. At the time of granulocytic phenotype formation (48-120 h), the total level of tyrosine phosphorylation of cytoplasmic proteins increased significantly. Tyrosine phosphorylation of cytoplasmic proteins in matured blood neutrophils was significantly lower than that of cytoplasmic proteins of HL-60 cells differentiated for 96 h with retinoic acid. Immunoblotting with anti-Erk2 and anti-phosphotyrosine monoclonal IgG2bk antibodies showed that Erk2 was expressed and tyrosine-phosphorylated at different levels in HL-60 proliferating cells and in cells at all stages of differentiation. Our data showed that tyrosine phosphorylation of cytoplasmic proteins in differentiating HL-60 cells changes dramatically during the period of phenotype formation and is accompanied by increasing activity of Erk2. An increasing number of apoptotic cells appeared in the differentiating HL-60 cell population during the granulocyte maturation stage (48-120 h of differentiation). The appearance at this time of differentiation of a new set of tyrosine-phosphorylated cytoplasmic proteins (also distinctive for apoptotic HL-60 cells mediated by etoposide) together with an increasing number of apoptotic cells in the differentiating population strongly suggests that these proteins are associated with the apoptotic process.  相似文献   

2.
The preform of the rabbit sterol carrier protein 2 (pre-rSCP2) was cloned, the uniformly 15N-labelled protein expressed in Escherichia coli and studied by three-dimensional 15N-resolved nuclear magnetic resonance spectroscopy. In spite of its low solubility in aqueous solution of only ∼0.3 mM, sequential 15N and 1H backbone resonance assignments were obtained for 105 out of the 143 residues. From comparison of the sequential and medium-range nuclear Overhauser effects (NOEs) in the two proteins, all regular secondary structures previously determined in mature human SCP2 (hSCP2) [Szyperski et al. (1993) FEBS Lett. 335: 18–26] were also identified in pre-rSCP2. Near-identity of the backbone 15N and 1H chemical shifts and 1 : 1 correspondence of 24 long-range NOEs to backbone amide groups in the two proteins show that the residues 21 – 143 adopt the same globular fold in pre-rSCP2 and mature hSCP2. The N-terminal 20-residue leader peptide of pre-rSCP2 is flexibly disordered in solution and does not observably affect the conformation of the polypeptide segment 21 – 143. Received 11 May 1998; accepted 15 May 1998  相似文献   

3.
Insulin action is initiated by binding to its cognate receptor, which then triggers multiple cellular responses by activating different signaling pathways. There is evidence that insulin receptor signaling may involve G protein activation in different target cells. We have studied the activation of G proteins in rat hepatoma (HTC) cells. We found that insulin stimulated binding of guanosine 5′-O-(3-thiotriphosphate) (GTP-γ-35S) to plasma membrane proteins of HTC cells, in a dose-dependent manner. This effect was completely blocked by pertussis toxin treatment of the membranes, suggesting the involvement of G proteins of the Gα i/Gα o family. The expression of these Gα proteins was checked by Western blotting. Next, we used blocking antibodies to sort out the specific Gα protein activated by insulin stimulation. Anti-Gα il,2 antibodies completely prevented insulin-stimulated GTP binding, whereas anti-Gα o,i3 did not modify this effect of insulin on GTP binding. Moreover, we found physical association of the insulin receptor with Gα i1,2 by copurification studies. These results further support the involvement of a pertussis toxin-sensitive G protein in insulin receptor signaling and provides some evidence of specific association and activation of Gα i1,2 protein by insulin. These findings suggest that Gα i1,2 proteins might be involved in insulin action. Received 23 September 1998; received after revision 23 November 1998; accepted 25 November 1998  相似文献   

4.
5.
6.
The structure and function of heterotrimeric G protein subunits is known in considerable detail. Upon stimulation of a heptahelical receptor by the appropriate agonists, the cognate G proteins undergo a cycle of activation and deactivation; the α-subunits and the βγ-dimers interact sequentially with several reaction partners (receptor, guanine nucleotides and effectors as well as regulatory proteins) by exposing appropriate binding sites. For most of these domains, low molecular weight ligands have been identified that either activate or inhibit signal transduction. These ligands include short peptides derived from receptors, G protein subunits and effectors, mastoparan and related insect venoms, modified guanine nucleotides, suramin analogues and amphiphilic cations. Because compounds that act on G proteins may be endowed with new forms of selectivity, we propose that G protein subunits may therefore be considered as potential drug targets. Received 18 September 1998; received after revision 6 November 1998; accepted 11 November 1998  相似文献   

7.
Protein folding is an extremely active field of research where biology, chemistry, computer science and physics meet. Although the study of protein-folding intermediates in general and equilibrium intermediates in particular has grown considerably in recent years, many questions regarding the conformational state and the structural features of the various partially folded intermediate states remain unanswered. Performing kinetic measurements on proteins that have had their structures modified by site-directed mutagenesis, the so-called protein-engineering method, is an obvious way to gain fine structural information. In the present review, this method has been applied to a variety of proteins belonging to the lysozyme/α-lactalbumin family. Besides recombinants obtained by point mutations of individual critical residues, chimeric proteins in which whole structural elements (10 – 25 residues) from α-lactalbumin were inserted into a human lysozyme matrix are examined. The conformational properties of the equilibrium intermediate states are discussed together with the structural characterization of the partially unfolded states encountered in the kinetic folding pathway. Received 28 May 1998; received after revision 6 July 1998; accepted 6 July 1998  相似文献   

8.
The structure and function of platelet-activating factor acetylhydrolases   总被引:3,自引:0,他引:3  
Platelet-activating factor acetylhydrolases (PAF-AHs, EC 3.1.1.47) constitute a unique and biologically important family of phospholipase A2s. They are related to neither the well-characterized secretory nor cytosolic PLA2s, and unlike them do not require Ca2+ for catalytic activity. The distinguishing property of PAF-AHs is their unique substrate specificity they act on the phospholipid platelet-activating factor (PAF), and in some cases on proinflammatory polar phospholipids, from which they remove a short acyl moiety – acetyl in the case of PAF – located at the sn-2 position. Because PAF is found both in the plasma and in the cytosol of many tissues, PAF-acetylhydrolases are equally widely distributed in an animal organism. Recent crystallographic studies shed new light on the complex structure-function relationships in PAF-AHs. Received 15 September 1997; received after revision 23 February 1998; accepted 25 February 1998  相似文献   

9.
Immunological evidence suggests that plants contain natriuretic peptides (NPs) and furthermore (3- [125I]iodotyrosol28) rat atrial NP (rANP) binds specifically to plant membranes. rANP and immunoaffinity-purified plant NP analogues also promote concentration-dependent stomatal opening. Here we report that kinetin, a synthetic cytokinin, and rANP induce stomatal opening in Tradescantia albiflora and that the effect of rANP is critically dependent on the secondary structure of the peptide hormone. The native circular molecule is active, whereas the linearized molecule shows no biological activity. Furthermore, kinetin- and rANP-induced stomatal opening is reversibly inhibited by two in hibitors of guanylate cyclase, LY 83583 and methylene blue. Stomatal opening is also induced in a concentration-dependent manner by the cell-permeant cyclic guanosine-3′,5′-monophosphate (cGMP) analogue 8-Br-cGMP, and this effect is prevented by the stomatal closure promoting plant hormone abscisic acid (ABA). We conclude that in guard cells kinetin and rANP pathways operate via guanylate cyclase upregulation, and we propose that ABA-induced closure is not cGMP-dependent. Received 1 October 1997; received after revision 2 December 1997; accepted 6 January 1998  相似文献   

10.
The Ca2+ ionophore ionomycin induced cytosolic [Ca2+]i elevation as well as strong activation of Cl efflux in mouse mammary epithelial cell lines expressing wild-type or mutated (deletion of phenylalaline 508) cystic fibrosis transmembrane conductance regulator (CFTR) or vector. Ionomycin-induced Cl efflux was abolished by the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, whereas both activators and inhibitors of phospholipase A2 had no effect, indicating the involvement of Ca2+-dependent Cl- channels. Stimulation of arachidonic acid release by ionomycin and phorbol ester was not significantly different between wild-type or mutated cell lines, whereas vector-transfected cells exhibited a significant higher release, which was shown to be due to larger amount of immunoreactive cytosolic phospholipase A2. These results indicate that phospholipase A2 activity of C127 cells was not influenced by the presence of wild-type or mutated CFTR. Received 27 April 1999; received after revision 11 June 1999; accepted 23 July 1999  相似文献   

11.
Despite the absence of classical tyrosine kinases encrypted in the kinome of Plasmodium falciparum, biochemical analyses have detected significant tyrosine phosphorylation in its cell lysates. Supporting such phosphorylation is critical for parasite development. These observations have thus raised queries regarding the plasmodial enzymes accountable for tyrosine kinase activities in vivo. In the current investigation, immunoblot analysis intriguingly demonstrated that Pfnek3, a plasmodial mitogen-activated protein kinase kinase (MAPKK), displayed both serine/threonine and tyrosine kinase activities in autophosphorylation reactions as well as in phosphorylation of the exogenous myelin basic protein substrate. The results obtained strongly support Pfnek3 as a novel dual-specificity kinase of the malarial parasite, even though it displays a HGDLKSTN motif in the catalytic loop that resembles the consensus HRDLKxxN signature found in the serine/threonine kinases. Notably, its serine/threonine and tyrosine kinase activities were found to be distinctly influenced by Mg2+ and Mn2+ cofactors. Further probing into the regulatory mechanism of Pfnek3 also revealed tyrosine phosphorylation to be a crucial factor that stimulates its kinase activity. Through biocomputational analyses and functional assays, tyrosine residues Y117, Y122, Y172, and Y238 were proposed as phosphorylation sites essential for mediating the catalytic activities of Pfnek3. The discovery of Pfnek3’s dual role in phosphorylation marks its importance in closing the loop for cellular regulation in P. falciparum, which remains elusive to date.  相似文献   

12.
Interferons (IFNs) are potent extracellular protein mediators of host defence and homoeostasis. This article reviews the structure of human IFN-β (HuIFN-β), in particular in relation to its activity. The recently determined crystal structure of HuIFN-β provides a framework for understanding of the mechanism of differentiation of type I IFNs by their common receptor. Insights are generated by comparison with the structures of other type I IFNs and from the interpretation of existing mutagenesis data. The details of the observed carbohydrate structure, together with biochemical data, implicate the glycosylation of HuIFN-β, which is uncommon among type I IFNs, as an important factor in the solubility, stability and, consequently, activity of the protein. Finally, these structural implications are discussed in the context of the clinical use of HuIFN-β. Received 12 June 1998; received after revision 16 July 1998; accepted 16 July 1998  相似文献   

13.
The amyloid β-peptide (Aβ) is a 4-kDa species derived from the amyloid precursor protein, which accumulates in the brains of patients with Alzheimer’s disease. Although we lack full understanding of the etiology and pathogenesis of selective neuron death, considerable data do imply roles for both the toxic Aβ and increased oxidative stress. Another significant observation is the accumulation of abnormal, ubiquitin-conjugated proteins in affected neurons, suggesting dysfunction of the proteasome proteolytic system in these cells. Recent reports have indicated that Aβ can bind and inhibit the proteasome, the major cytoslic protease for degrading damaged and ubiquitin-conjugated proteins. Earlier results from our laboratory showed that moderately oxidized proteins are preferentially recognized and degraded by the proteasome; however, severely oxidized proteins cannot be easily degraded and, instead, inhibit the proteasome. We hypothesized that oxidatively modified Aβ might have a stronger (or weaker) inhibitory effect on the proteasome than does native Aβ. We therefore also investigated the proteasome inhibitory action of Aβ 1–40 (a peptide comprising the first 40 residues of Aβ) modified by the intracellular oxidant hydrogen peroxide, and by the lipid peroxidation product 4-hydroxynonenal (HNE). H2O2 modification of Aβ 1–40 generates a progressively poorer inhibitor of the purified human 20S proteasome. In contrast, HNE modification of Aβ 1–40 generates a progressively more selective and efficient inhibitor of the degradation of fluorogenic peptides and oxidized protein substrates by human 20S proteasome. This interaction may contribute to certain pathological manifestations of Alzheimer’s disease Received 26 September 2000; accepted 26 September 2000  相似文献   

14.
Evidence from systems as diverse as mollusks, insects and mammals has revealed that adenylyl cyclase, cyclic adenosine 3′,5′-monophosphate (cAMP) cascade, cAMP-dependent protein kinases and their substrates are required for the cellular events underlying the short-term and long-term forms of memory. In Aplysia and Drosophila models, the coincident activation of independent paths converge to produce a synergistic activation of Ca2+/calmodulin-stimulable adenylyl cyclase, thereby enhancing the cAMP level that appears as the primary mediator of downstream events that strengthen enduring memory. In mammals, in which long-term memories require hippocampal function, our understanding of the role of adenylyl cyclases is still fragmentary. Of the differently regulated isoforms present in the hippocampus, the susceptibility of type 1 and type 8 to stimulation by the complex Ca2+/calmodulin and their expression in the hippocampus suggest a role for these two isoforms as a molecular coincidence device for hippocampus-related memory function. Here, we review the key features of Ca2+/calmodulin stimulable adenylyl cyclases, as well as the involvement of cAMP-regulated signaling pathway in the processes of learning and memory.  相似文献   

15.
The human hair follicle is composed of different concentric compartments, which reflect different programmes of differentiation. Using monoclonal antibodies against α2β1 and α3β1 integrins we demonstrated a shift in their expression, from a basolateral distribution in the basal cells of the lower outer root sheath, to an apicolateral expression in the upper outer root sheath, as in epidermis. This shift takes place in a transition zone, localized to the midpart of the follicle. The distinct basolateral distribution of α2β1 and α3β1 integrins in the lower portion of the outer root sheath coincides with the presence of basal cell protrusions and is probably linked to the presence of the vitreous membrane which surrounds the bottom part of the anagen human hair follicle. Moreover, we showed that the expression of α6β4 integrin is discontinuous along the hair follicle and coincides with that of laminin 5. Together these results establish that within a given compartment – namely the outer root sheath – several domains can be clearly identified, which probably reflect the onset of successive differentiation pathways along the hair follicle. Received 17 January 1997; received after revision 18 February 1997; accepted 24 February 1997  相似文献   

16.
Signal regulation by family conspiracy   总被引:6,自引:0,他引:6  
The signal regulating proteins (SIRPs) are a family of ubiquitously expressed transmembrane glycoproteins composed of two subgroups: SIRPα and SIRPβ, containing more than ten members. SIRPα has been shown to inhibit signalling through a variety of receptors including receptor tyrosine kinases and cytokine receptors. This function involves protein tyrosine kinases and is dependent on immunoreceptor tyrosine-based inhibition motifs which recruit key protein tyrosine phosphatases to the membrane. Negative regulation by SIRPα may also involve its ligand, CD47, in a bi-directional signalling mechanism. The SIRPβ subtype has no cytoplasmic domain but instead associates with at least one other transmembrane protein (DAP-12, or KARAP). DAP-12 possesses immunoreceptor tyrosine-based activation motifs within its cytoplasmic domain that are thought to link SIRPβ to activating machinery. SIRPα and SIRPβ thus have complementary roles in signal regulation and may conspire to tune the response to a stimulus. Received 6 July 2000; revised 2 August 2000; accepted 5 August 2000  相似文献   

17.
The ability of three isoforms of protein kinase CK1 (α, γ1, and δ) to phosphorylate the N-terminal region of p53 has been assessed using either recombinant p53 or a synthetic peptide reproducing its 1–28 sequence. Both substrates are readily phosphoylated by CK1δ and CK1α, but not by the γ isoform. Affinity of full size p53 for CK1 is 3 orders of magnitude higher than that of its N-terminal peptide (K m 0.82 μM vs 1.51 mM). The preferred target is S20, whose phosphorylation critically relies on E17, while S6 is unaffected despite displaying the same consensus (E-x-x-S). Our data support the concept that non-primed phosphorylation of p53 by CK1 is an isoform-specific reaction preferentially affecting S20 by a mechanism which is grounded both on a local consensus and on a remote docking site mapped to the K221RQK224 loop according to modeling and mutational analysis.  相似文献   

18.
The role of some serine/threonine kinases in the regulation of mitochondrial physiology is now well established, but little is known about mitochondrial tyrosine kinases. We showed that tyrosine phosphorylation of rat brain mitochondrial proteins was increased by in vitro addition of ATP and H2O2, and also during in situ ATP production at state 3, and maximal reactive oxygen species production. The Src kinase inhibitor PP2 decreased tyrosine phosphorylation and respiratory rates at state 3. We found that the 39-kDa subunit of complex I was tyrosine phosphorylated, and we identified putative tyrosine-phosphorylated subunits for the other complexes. We also have strong evidence that the FoF1-ATP synthase α chain is probably tyrosine-phosphorylated, but demonstrated that the β chain is not. The tyrosine phosphatase PTP 1B was found in brain but not in muscle, heart or liver mitochondria. Our results suggest that tyrosine kinases and phosphatases are involved in the regulation of oxidative phosphorylation.Received 7 January 2005; received after revision 19 April 2005; accepted 22 April 2005  相似文献   

19.
Signalling via the protein kinase Raf-MEK-ERK pathway is of major importance for transformation by oncogenes. To identify genes affected by inhibition of this pathway, c-JUN transformed rat fibroblasts were treated with a MEK1 inhibitor (PD98059) and subjected to two-dimensional gel electrophoresis after cell lysis. Gene products with expression influenced by MEK1 inhibition were determined by mass spectrometry of fragments from in-gel tryptic digestions. The expression of pirin, a nuclear factor I-interacting protein, was lowered after inhibition of MEK1. Western blot analysis revealed increased expression of pirin in RAS and c-JUN transformed cells in the absence of PD98059. Inhibition of MEK1 also led to reduced expression of α-enolase, phosphoglycerate kinase, elongation factor 2 and heterogeneous nuclear ribonucleoprotein A3, the latter two being detected as truncated proteins. In contrast, the level of ornithine aminotransferase was increased. We conclude that inhibition of MEK1 results in major alterations of protein expression in c-JUN transformed cells, suggesting that this pathway is important for oncogene-induced phenotypic changes. Received 30 December 1998; accepted 12 January 1999  相似文献   

20.
Chicken avidin and bacterial streptavidin, (strept)avidin, are proteins widely utilized in a number of applications in life science, ranging from purification and labeling techniques to diagnostics, and from targeted drug delivery to nanotechnology. (Strept)avidin-biotin technology relies on the extremely tight and specific affinity between (strept)avidin and biotin (dissociation constant, Kd≈10−14–10−16 M). (Strept)avidins are also exceptionally stable proteins. To study their ligand binding and stability characteristics, the two proteins have been extensively modified both chemically and genetically. There are excellent accounts of this technology and chemically modified (strept)avidins, but no comprehensive reviews exist concerning genetically engineered (strept)avidins. To fill this gap, we here go through the genetically engineered (strept)avidins, summarizing how these constructs were designed and how they have improved our understanding of the structural and functional characteristics of these proteins, and the benefits they have provided for (strept)avidin-biotin technology. Received 22 June 2006; received after revision 1 August 2006; accepted 21 September 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号