首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对电池SOC估计误差较大的问题,本文提出了双卡尔曼滤波算法。介绍了电池常用的等效模型和使用方向,以双RC模型为基础建立了电池系统的空间方程,使用混合脉冲功率特性测试法得到了模型参数值;推导了安时积分法和扩展卡尔曼滤波原理,在基础上提出了双卡尔曼滤波算法,对双卡尔曼滤波的原理和公式实现进行了详细推导;设计了电池组的充放电实验对算法进行验证,结果表明安时积分法估计误差随时间不断增大,扩展卡尔曼算法估计误差震荡很大,双卡尔曼滤波的估计精度较高,最大估计误差只有0.13%。  相似文献   

2.
全钒液流电池(vanadium redox flow battery,VRB)荷电状态(state of charge,SOC)是评价电池性能、估算电池容量的重要参数,也是储能系统管理和调控的关键依据。文章通过搭建实时仿真平台,采用基于卡尔曼滤波原理,在扩展卡尔曼滤波(extended Kalman filter,EKF)算法的基础上提出的双卡尔曼滤波(double Kalman filter,DKF)算法对全钒液流电池SOC进行在线估计,并将其与传统的安时积分法测量方式进行对比分析。实验表明,该方法相比于安时积分法具有更好的准确性,且估算误差在2%以内。  相似文献   

3.
为提高安时积分法对荷电状态估计的精度,解决其估计误差随时间不断增大的问题,采用极限学习机算法建立了安时积分法的误差预测模型,该模型以电池工作电流作为输入,对应的安时积分法荷电状态估计误差作为输出,将误差预测模型与安时积分法进行融合,对安时积分法的荷电状态估计值进行校正,形成了安时积分法和极限学习机方法融合的锂离子电池荷电状态在线估计方法.仿真分析结果表明,相比安时积分法,融合方法可有效减小荷电状态估计误差,克服安时积分法估计误差随时间不断增大的问题.  相似文献   

4.
针对电动汽车用锂离子电池组,提出了一种能修正初始误差的荷电状态估算方法,即采用扩展卡尔曼滤波与安时积分的组合算法.在分析电池各种等效电路模型优缺点的基础上,选用具有双阻容并联网络的PNGV改进型电池模型,并以某锂电池为实验对象,对其进行模型参数识别.然后依据电池模型建立电池的非线性状态空间方程,并对电池开路电压与SOC的关系进行多项式拟合.恒流脉冲放电和ECE15工况下的两种实验均表明,文中算法可有效修正SOC的初始误差,并能保证估算精度.  相似文献   

5.
针对卡尔曼滤波法在锂离子电池荷电状态(SOC)估计时存在误差较大、收敛较慢等问题,提出了一种双自适应衰减扩展卡尔曼滤波荷电状态估计(DAFEKF)算法。该算法首先设计了针对动力电池的荷电状态估计观测器,利用测得的电流和电压值分别作为观测器的输入和观测值,结合双自适应衰减扩展卡尔曼滤波估计出观测器中的电池荷电状态,在卡尔曼滤波算法的基础上加入时变衰减因子来减弱过去数据对当前滤波值的影响,并自适应地调整卡尔曼算法中过程噪声和测量噪声协方差。利用DAFEKF算法估计出的SOC结果与扩展卡尔曼滤波(EKF)和自适应扩展卡尔曼滤波(AEKF)算法进行了比较,结果表明,DAFEKF方法具有较好的准确性、鲁棒性和收敛性,使SOC估计误差控制在2%以内。  相似文献   

6.
为了方便实时估算三元锂电池的荷电状态,对三元锂电池建立二阶RC模型,结合混合脉冲充放电试验并通过最小二乘法对二阶RC模型进行参数识别,提出基于安时积分法策略的扩展卡尔曼滤波的荷电状态估算方法.在Matlab/Simulink中建立仿真模型,仿真结果表明,与实际的荷电状态值相比,该估算方法可以估计电池的荷电状态,误差在3%以内.  相似文献   

7.
为实现三元锂离子电池荷电状态(SOC)、能量状态(SOE)和健康状态(SOH)这3种主要状态的在线联合估计,并应对电动汽车实际使用工况中各种噪声干扰带来的开环累积误差问题,提高锂离子电池在线估计的稳定性,提出了一种基于双自适应扩展卡尔曼滤波(DAEKF)算法的三元锂离子电池多时间尺度主要状态在线联合估计方法。在二阶RC模型基础上推导DAEKF算法的状态空间方程,用带遗忘因子的递推最小二乘法(FFRLS)进行在线参数辨识,以微观时间尺度进行锂离子电池SOC和SOE的在线估计,以宏观时间尺度进行锂离子电池SOH的在线估计,从而实现锂离子电池3种主要状态的在线联合估计。最后,以NVR18650B型三元锂离子电池的不同运行工况对所提出的方法进行实验验证。实验结果表明:在两种验证工况下,文中方法都能够快速收敛辨识模型参数,微观时间尺度中SOC和SOE的估计误差均稳定保持在1%以内,宏观时间尺度中SOH的估计误差稳定保持在1.6%以内;与EKF算法相比,文中所提出的方法具有更高的估算精度以及更好的估计收敛性和稳定性。  相似文献   

8.
传统电池荷电状态(SOC)估计中常用的扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)方法仅适用于线性系统和高斯条件,虽然粒子滤波(PF)算法能用于非线性和非高斯系统,但PF算法在滤波更新时存在粒子退化现象,使粒子集无法表示实际后验概率分布,导致估计精度降低.采用改进的扩展粒子滤波(EPF)和无迹粒子滤波(UPF)算法对电池SOC进行估计,抑制了粒子权重退化.以Thevenin模型对电池进行建模,利用带遗忘因子的最小二乘方法进行模型参数辨识,结合改进后的滤波算法对电池SOC进行估计.实验结果表明,以UKF为建议密度函数进行重采样的UPF方法平均估计误差为0.71%,低于以EKF为建议密度函数的EPF方法平均误差(1.09%),两种方法的估计误差均小于PF估计误差(1.36%),有效抑制了粒子权重退化.  相似文献   

9.
用改进的安时计量法估计电动汽车动力电池SOC   总被引:17,自引:0,他引:17  
为了解决安时计量法不能估计初始荷电状态(SOC0)、难于准确测量库仑效率和电池可用容量变化的问题,提出折算库仑效率的定义,建立开路电压法、K a lm an滤波法和安时计量法的组合方法估计电池SOC。具体算法中,根据温度和老化对电池可用容量的影响试验建立电池容量的影响因素模型,基于单变量电池模型实现K a lm an滤波。使用11 085 s的镍氢电池组FUDS试验数据验证方法精度,经与放电试验真实值比较得到的误差为2.3%,优于安时计量法的19.7%,满足电动汽车对SOC估计误差8%的使用要求。  相似文献   

10.
卡尔曼滤波在GPS制导火箭弹中的应用   总被引:1,自引:0,他引:1  
针对直接采用全球定位系统(GPS)测量弹道误差较大的问题,该文提出应用扩展卡尔曼滤波方法进行弹道测量。采用火箭弹弹道模型和GPS误差模型,建立卡尔曼滤波系统状态模型和以伪距为观测量的系统测量模型,推导并分析了相应的滤波公式,并对GPS动态定位的数据进行滤波。理论分析和仿真结果表明,GPS测量的位置误差和速度误差具有随机性,且误差幅度较大,采用卡尔曼滤波算法后,弹道的位置估计误差和速度估计误差分别降低到观测误差的1/3和1/4左右,而且滤波收敛速度快。  相似文献   

11.
针对电池组的安时积分法由于传感器的精度、电池老化、积分误差和初值,会导致SOC(state of charge)的估算不准确等问题,对传统安时积分法的SOC初值、标称容量、积分周期等参数进行了改进.在探索SOC与开路电压U_o内在联系的基础上,建立了一阶RC等效电路模型,通过带遗忘因子的递推无参数最小二乘法(PF-RLS)实时在线提取更新U_o,引入对U_o影响较大的电池温度θ变量,建立SOC-U_o-θ三维模型,为改进的安时积分法提供准确的初值,在考虑电池组不一致性的基础上,提出基于电池组的最大电压、最小电压融合算法,进行了FUDS(federal urban driving schedule)工况检测和实车工况验证.结果表明:PF-RLS在线提取U_o的精度为2.55%,单体电池SOC的精度为3.20%,电池组SOC算法的精度为4.00%,满足QC/T 897—2011 《电动汽车用电池管理系统技术条件》的要求.  相似文献   

12.
针对电池离线参数辨识复杂、模型系统误差无法在线校正等问题,提出基于等效电路的参数自适应电池模型及电池荷电状态估计方法。该方法设计了针对动力电池的自适应参数观测器并证明了稳定性,通过在线估计电池参数从根源校正模型误差,建立滑动平均滤波器对估计参数滤波降噪,利用多时间维度思想周期性更新电池模型,并结合卡尔曼滤波算法进行荷电状态估计。搭建电池充放电测试平台进行实验,实验结果表明:城市道路循环工况下,基于参数自适应电池模型的卡尔曼滤波电池荷电状态估计误差小于3%。该算法简单、准确、适应性强,对于多变环境、长周期使用条件下的动力电池监测具有较高的实用价值。  相似文献   

13.
一类非均匀采样数据系统的状态估计   总被引:1,自引:0,他引:1  
首先利用提升技术推导出非均匀周期刷新和周期采样多率系统的提升状态空间模型;并基于卡尔曼滤波原理,通过极小代估计误差协方差矩阵,提出这类系统提升状态空间模型的状态估计算法.仿真试验说明,提出的算法可以有效地估计系统状态.  相似文献   

14.
自适应卡尔曼滤波法磷酸铁锂动力电池剩余容量估计   总被引:1,自引:1,他引:0  
卡尔曼滤波法在估计动力电池的剩余容量(SOC)时,由于系统噪声的不确定,可能导致算法不收敛,而且算法的估计性能受模型精度的影响,笔者采用自适应卡尔曼滤波法来动态地估计电动汽车用磷酸铁锂动力电池的SOC。首先对电池模型进行了研究,建立了适用于SOC估计的电池模型,然后设计了相应的电池充放电实验检测到模型的参数,并进行了验证,最后将自适应卡尔曼滤波法应用到该模型,在未知干扰噪声环境下,在线估计电池的SOC。仿真结果表明:自适应卡尔曼滤波法能够实时修正微小的模型误差带来的SOC估计误差,估计精度高于卡尔曼滤波法,且自适应卡尔曼滤波法对初值误差具有修正作用。实车循环行驶实验表明算法适用于磷酸铁锂动力电池的SOC估计。  相似文献   

15.
无迹卡尔曼滤波法(Unscented-Kalman Filter,UKF)在估计动力电池的剩余容量(State of Charge,SOC)时,由于系统噪声的不确定,可能导致算法不收敛,而且算法的估计性能受模型精度的影响,为此采用自适应无迹卡尔曼滤波法(Adaptive-UKF,AUKF)动态估计电动汽车动力电池的SOC.建立了适用于SOC估计的电池模型,辨识相应的电池模型的参数并进行验证,将AUKF应用到该模型,在未知干扰噪声环境下,在线估计电池的SOC.试验仿真结果表明:UKF算法的估计误差在-0.04~0.06之间跳动,而AUKF算法的估计误差平稳的保持在0.05以内,实时修正微小的模型误差带来的SOC估计误差.  相似文献   

16.
为提高锂离子荷电状态(state of charge,SOC)及健康状态(state of health,SOH)的精度,提出改进双自适应扩展卡尔曼滤波(dual adaptive extended Kalman filter,DAEKF)算法。基于二阶RC模型,建立空间状态方程;选取电池容量作为SOH的表征量,在双扩展卡尔曼滤波算法基础上引入改进的Sage-Husa自适应算法,实现系统协方差矩阵的实时更新;为降低系统计算量,进一步加入多时间尺度理论进行优化。实验结果表明,提出的算法能较准确地估计锂电池的SOC与SOH,SOC的平均误差为0.58%,SOH最大估计误差为0.8%,该算法正确有效。  相似文献   

17.
针对全钒液流电池(VRB)充放电时,循环泵产生的支路电流对荷电状态(SOC)估算有影响的问题,提出了一种基于无迹卡尔曼滤波的全钒液流电池SOC估算方法。通过改进的新一代车辆伙伴关系(PNGV)等效电路模型,在考虑了电池堆极化、支路电流分流和温度对电池内阻影响的情况下,建立了VRB仿真模型。采用无迹卡尔曼滤波(UKF)算法和扩展卡尔曼滤波(EKF)算法对电池SOC分别进行估算,并与试验测量值进行对比分析。仿真结果表明:UKF算法比EKF算法更接近试验测量值,其估算误差不超过±0.02。  相似文献   

18.
针对锂动力电池荷电状态(State of Charge,SOC)估计策略,提出了一种基于模型误差EKF-HIF算法的SOC联合估计方法。首先,通过建立电池等效电路模型,利用BP神经网络(Back Propagation Neural Network,BPNN)预测该电池模型误差。其次,推导扩展卡尔曼滤波(EKF)和H∞滤波(H Infinity Filter,HIF)算法流程,根据模型误差选择不同算法进行SOC状态估计。最后,通过仿真验证了该联合估计算法的有效性和可行性。  相似文献   

19.
针对锂离子电池充放电电压信号(DCV)中存在的噪声信号导致荷电状态(SOC)估计精度降低、波动较大的问题,提出了一种基于离散小波变换(DWT)的降噪扩展卡尔曼滤波(EKF)算法。该算法利用多分辨率分析(MRA)分解携带噪声的DCV信号,通过对比4种阈值硬阈值降噪规则对携带噪声的DCV信号的降噪处理效果,选择Stein无偏风险阈值硬阈值降噪规则调整小波系数,通过含自适应遗忘因子的递推最小二乘法辨识电池模型参数后,利用扩展卡尔曼滤波算法估计SOC。仿真结果表明:使用Stein无偏风险阈值硬阈值降噪规则有效地降低了DCV信号中的噪声信号;所提算法具有较好的鲁棒性,能够有效地提高SOC估计精度,使SOC估计误差范围控制在3%之内。  相似文献   

20.
为了解决锂电池内部参数时变性和SOC估计不准确等问题,提出了一种电池模型参数在线辨识与SOC联合估计算法.在二阶RC等效电路模型基础上该联合算法于宏观时间尺度下采用无迹卡尔曼滤波算法在线辨识电池模型参数,并联合微观时间尺度下的扩展卡尔曼滤波算法估计锂电池SOC,在UDDS工况下验证了该联合算法对锂电池SOC的准确实时估...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号