首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
标准CMOS工艺下单片集成MSM光电探测器的 2 Gb/s光接收机   总被引:1,自引:0,他引:1  
肖新东  张世林  毛陆虹  谢生  陈燕 《科学通报》2011,56(11):881-885
在标准互补金属氧化物半导体(complementary metal oxide semiconductor, CMOS)工艺下设计了1种单片集成金属-半导体-金属(metal-semiconductor-metal, MSM)光电探测器的光接收机. 带有源反馈和负米勒反馈电容的跨阻前置放大器用来提高光接收机的带宽. 由于MSM光电探测器具有较高的响应度, 所以光接收机的灵敏度得到改善. 由于MSM光电探测器的寄生电容较小, 在特许半导体0.35 μm工艺下实现了带宽为1.7 GHz的光接收机. 测试结果表明, 在-15 dBm的光功率和误码率为10-9的条件下, 光接收机的数据传输速率达到了2 Gb/s. 在3.3 V电压下, 芯片的功耗为94 mW.  相似文献   

2.
朱淼  朱宏伟 《自然杂志》2016,38(2):97-100
光电探测是石墨烯器件未来重要的发展方向之一。在众多类型的石墨烯/半导体异质结光电探测器件中,石墨烯/硅光电探测器由于在可见光范围内拥有极高的光电转换效率,并且可方便地在宏观条件下进行制备和组装,因此拥有良好的应用前景。首先介绍了石墨烯/硅光电探测器的研究背景,其次分析了其工作原理和机制,并结合几种典型的石墨烯/硅光电探测器对其性能进行了探讨,最后对石墨烯/硅光电探测器的发展做了展望。  相似文献   

3.
小型化和多功能化是微纳传感器件及其集成系统的主要发展目标.构建无源的自驱动传感器件是实现这一目标的有效途径.利用异质结接触形成的内建电场分离光生电子空穴对从而形成响应电流是实现自驱动光电探测的一种直接有效的方式.在异质结结构的自驱动光电探测器研究中,肖特基型自驱动光电探测器因具有光谱选择性强、响应频率快等特点而备受关注.本文重点介绍了近年来利用低维纳米材料构建的肖特基型自驱动光电探测器,阐释了利用应变/应力、通过界面调控优化器件性能的基本原理,展望了肖特基型自驱动光电探测器发展方向和研究目标.  相似文献   

4.
《科学通报》2021,66(25):3261-3271
金属卤化物作为一类新型光电材料,在发光二极管、太阳能电池、光电探测器、激光器等领域具有重要的应用前景.其晶体结构丰富且易被调节,通过在分子尺度上的控制,可由三维(3D)逐渐扩展至二维(2D)、一维(1D)及零维(0D).与三维金属卤化物相比,低维金属卤化物通常展现出更大的结构扭曲、更强的量子限域效应以及显著提升的激子结合能,使其成为在照明和显示领域备受关注的高效发光材料.现阶段,低维金属卤化物结构和光学性调控在依赖于传统化学手段的同时,也能够通过高压等物理手段完成.与传统化学调控手段不同,高压技术能够在不改变化学组分的前提下,对金属卤化物的结构和性能进行连续调制.本文首先介绍了传统化学手段对金属卤化物的结构和光学性质调控,随后讨论了高压技术在金属卤化物结构演变和光学性质优化方面的应用,重点阐述了其结构与光学性能之间的内在联系.本文为发光低维金属卤化物的合理设计与精准合成提供了重要的思路.  相似文献   

5.
沈耀春 《科学通报》1994,39(24):2238-2238
二氧化钛(TiO_2)是一种重要的半导体电极材料,它具有优良的化学稳定性,能够抵抗介质及光电化学腐蚀.但是,TiO_2半导体因其禁带宽度较大(3.2eV),仅能吸收太阳光的紫外部分,因而光电转换效率极低.为了提高TiO_2半导体电极对太阳能的利用率,人们在电极表面修饰染料等光敏剂,以增加电极对可见光的吸收.然而,在一个平滑的电极表面,单层染料分子仅能吸收不到1%的单色光,这就限制了电极的光电转换效率;采用多层染料能吸收更多的入射光,但同时却恶化了电极的光电特性.为了克服这一困难,瑞士的Gratzel等人采用由TiO_2超微粒组成的电极来吸附染料,取得了较好的效果.  相似文献   

6.
紫外光电探测器的研究与开发在工农业生产、环境监测与保护以及国防工业等领域均具有重要的现实意义.本文以硅纳米孔柱阵列(Si-NPA)为衬底,采用化学气相沉积(CVD)法并通过改变GaN沉积时间,制备了3种GaN/Si-NPA纳米异质结构阵列,并对其表面形貌、化学组成和光致发光特性进行了表征.在此基础上,通过上、下电极制作,制备了结构为ITO/GaN/Si-NPA/sc-Si/Ag的光电探测器原型器件,并对其光电探测性能进行了测量.结果表明,在不施加偏压的情况下,采用优化条件制备的ITO/GaN/Si-NPA/sc-Si/Ag器件能够实现对紫外光的有效探测.器件对340nm单色紫外光的响应度达到~0.15mA/W,光响应和恢复时间分别为~0.12和~0.24s.实验结果对研制新型硅基GaN紫外光电探测器具有很好的借鉴意义.  相似文献   

7.
赵凯  魏钟鸣  夏建白 《科学通报》2022,(16):1796-1805
偏振探测在成像、遥感和生物检测等领域具有非常广泛的应用.为了契合光电领域高度集成化的发展目标,偏振光探测器的器件结构需要跳出复杂的检偏器与探测器分离式结构模型,开发新型探测路线.对偏振光天然敏感的主族层状低维半导体可实现直接偏振光探测,实现探测结构的简化.基于Ⅳ族锗系和锡系的低对称性层状半导体在短波近红外具有较高的光响应以及偏振灵敏度,并且基于二维GeSe的偏振光探测器已经实现对近红外实物的二维式扫描偏振成像.基于Ⅴ族锑系和铋系的层状半导体在可见光波段具有较宽的光谱响应以及低的探测噪声,也已实现偏振成像.基于该两类主族层状低维半导体的偏振成像为未来偏振图像传感技术提供了一种简洁可行的思路.  相似文献   

8.
日益流行的柔性电子器件要求在反复变形状态下,材料仍能保持优异的力学和电学性能.而石墨烯作为一种二维(two dimensional,2D)碳纳米片,具有独特的力学和电学性能,成为构筑此类柔性电子器件的首选基元材料.然而,如何将石墨烯纳米片组装成高性能的石墨烯纳米复合材料,仍然存在巨大挑战.天然鲍鱼壳因其内部有序规整的层状结构和丰富的界面相互作用,而具有综合优异的力学性能.这种独特的界面结构设计,为2D纳米片仿生组装提供了新的思想源泉.本文按照"有所发现,有所发明,有所创造"的学术研究思路,总结了最近几年国内外课题组关于仿生石墨烯纳米复合材料(bioinspired graphene-based nanocomposites,BGBNs)的研究进展;分析了石墨烯层间不同的界面相互作用;详细讨论了基于协同效应,仿生构筑强韧一体化石墨烯纳米复合材料的策略;重点阐述了BGBNs的拉伸强度、韧性以及电导率等基本物理性能.最后,本文也简单概括了BGBNs在柔性电子器件领域的应用和潜在的挑战,并展望了BGBNs未来的发展方向.  相似文献   

9.
宽禁带半导体ZnO具有高达60 meV的激子束缚能,是一种极具潜力的短波长发光材料.在其p型掺杂存在巨大挑战的现状下,发展ZnO基异质结光发射器件不失为一种理想的选择.本文围绕p-n结型和MIS结型(金属-绝缘体-半导体)两类异质结构,介绍了ZnO紫外发光二极管(LED)和激光二极管(LD)的研究进展.针对ZnO异质结LED/LD存在的问题(如:发光效率低、稳定性差),重点介绍了通过引入ZnO单晶纳米线和金属局域表面等离激元,以及采用表面钝化等方法,改善器件性能方面的研究工作.  相似文献   

10.
碳量子点(carbon quantum dots, CQDs)由于其高的荧光量子产率、带隙可调、溶剂分散性好、高的电子迁移率、较长的热电子寿命、宽的光学吸收、成本低廉、低毒性等优点,近几年作为新型光电材料在光电器件领域崭露头角.本文主要介绍了CQDs的结构、光学性能及其发光机理,总结了近几年来CQDs在白光发光二极管、量子点电致发光二极管、激光二极管、可见光通信、聚合物太阳能电池领域取得的进展以及存在的相关问题,以拓展CQDs在未来照明、显示、通信和太阳能电池等光电器件中的应用.  相似文献   

11.
《科学通报》2021,66(17):2095-2104
光电器件的柔性化、结构微型化是光电技术发展的重要趋势.溶液法加工特别是印刷技术和纳米光电材料的结合,有利于克服传统光电器件制备工艺复杂、成本高昂的局限性,在未来柔性化、图案化以及大面积光电器件领域具有广阔的应用前景.本文主要聚焦于可溶液加工纳米光电材料与器件,介绍了我们课题组近年来在该领域的科研进展,包括喷墨打印量子点技术与应用,溶液加工量子点界面发光机制,以及发光、探测、突触器件结构设计与性能优化,希望为该领域学术研究和产业应用提供参考.  相似文献   

12.
由于铁电薄膜的诱人应用前景,最近几年受到人们的极大关注。铁电氧化物薄膜可望用于多种微电子学和光子学器件,如:铁电存储器,电光调制器,红外探测器,光学二次谐波发生器以及超导铁电器件等。BaTiO_3薄膜是最重要的钙钛矿结构铁电薄膜之一,它具有优良的压电,铁电,热释电和非线性光学性质。所以,很多研究组都很重视BaTiO_3薄膜的生长机理和改进薄膜性能的研究。  相似文献   

13.
非晶态硒化镉薄膜的时间分辨光电导和光致发光研究   总被引:1,自引:0,他引:1  
郭亨群 《科学通报》1994,39(8):693-693
硒化镉薄膜在光敏电阻、太阳能电池、薄膜晶体管和微波放大器等方面有着广泛的应用,受到人们的重视.非晶态硒化镉(α-CdSe)材料的无序网络结构只具有短程有序性.缺乏长程有序性,其能带结构不同于晶态硒化镉,所以α-CdSe薄膜具有独特的电学和光学性质,成为一种新型光电功能材料,在快速光电探测器和快速光电子开关等方面有广阔的应用前景.  相似文献   

14.
王舒  石磊  谢沚昂  王好奇  蓝琪  何缘  严冬  张杏  罗惠霞 《科学通报》2019,64(16):1651-1670
混合导体透氧膜在高温条件下(特别是温度高于700℃)是一种同时具有氧离子和电子混合传导性能的无机致密陶瓷膜.由于此类膜材料在中高温条件下不仅可以清洁、高效、经济地从空气或者其他含氧气氛中高选择性地分离氧气,同时还具有一定的催化活性,所以这类氧离子和电子混合传导膜在纯氧制备、燃料电池、甲烷部分氧化制合成气、富氧燃烧等方面有着巨大的应用潜力,相关研究也成为材料及化工等领域研究学者关注的焦点.为了找到既具有高透氧性能又具有优异稳定性能的透氧膜材料,研究人员做了大量的工作和努力.本文对近年来CO_2稳定的双相混合导体透氧膜材料的研究进展进行系统的综述,简单介绍了双相混合导体透氧膜的透氧机理,分析了双相透氧膜材料的制备方法、几何形状、烧结温度以及组成成分等对透氧性能及稳定性的影响,介绍了双相混合导体透氧膜膜反应器在甲烷部分氧化制备合成气、耦合反应、水分解及富氧燃烧中的应用.最后分析了目前存在的科学问题,并对CO_2稳定的双相混合导体透氧膜材料未来的发展进行了展望.  相似文献   

15.
首先采用漂移-扩散理论分析了单行载流子光电探测器(UTC-PD)的光电流响应. 利用器件仿真器ATLAS建立了UTC-PD的器件模型, 并对优化设计的InP/InGaAs PD的能带结构和性能参数作了二维模拟. 模拟结果表明, 光敏面为14 ?μm×1 μm、反偏电压为2 V时, 光电流响应的线性动态范围达60 mW, 响应度和?3 dB带宽分别为0.16 A/W和40 GHz. 当输入光脉冲宽度为10 ps时, 光电流响应的峰值达1.3 mA, 半峰全宽(FWHM)为28 ps.  相似文献   

16.
刘忠范 《科学通报》2022,(22):2576-2577
<正>传统的图像识别系统由分立的光电探测器和计算机处理系统组成,由光电探测器先探测目标光信号,然后将探测到的光信号转换成电信号,再传输到计算机系统进行处理以达到识别的目的[1~3].但是光电探测器在探测目标图像的同时会产生大量冗余信息,  相似文献   

17.
史盛华 《科学通报》2013,(Z1):485-489
α-Fe2O3(带隙2.2eV)和Zn2SnO4(带隙3.6eV)两者都是廉价的光电材料,然而前者光生载流子复合效率较高,后者只有在紫外光区有光电响应.本文采用水热法制备了核壳结构的α-Fe2O3@Zn2SnO4复合材料,利用X射线衍射(XRD)、场发射电子扫描电子显微镜(FESEM)、X射线光电子能谱(XPS)、紫外可见吸收光谱(UV-vis)及表面光电压谱(SPS)等分析手段进行材料结构、形貌和性能表征.结果表明,该核壳结构复合材料的光电响应比单一组分光电响应的强度和范围都有明显的改善.该复合材料光电响应的改善,与水热法制备的α-Fe2O3@Zn2SnO4核壳结构有关.α-Fe2O3与Zn2SnO4复合后Fe2p的结合能变化明显这可能有利于光生载流子分离.  相似文献   

18.
苗澎  王志功  李智群  田玲 《科学通报》2009,54(20):3014-3020
甚短距离光互连高速集成电路技术把光电子器件和高速集成电路紧密结合起来, 可提供多条高速并行信号通道, 在短距离内传输达到上百Gb/s甚至Tb/s的总带宽. 本文介绍了甚短距离光互连高速集成电路基本结构, 从甚短距离光传输系统应用研究、光源与探测器、高速光电芯片封装技术和关键高速电路等几个方面, 介绍了国内外该领域的最新研究进展. 最后对甚短距离光互连集成电路应用前景进行了展望.  相似文献   

19.
傅德■ 《科学通报》1980,25(13):595-595
视场直径≥100毫米的电子照相机,是一种能够把≥10~8个信息元同时精确记录下来的高效率光电图象探测器.这种探测器兼备光电阴极的高灵敏度和照相底片同时全景成象的双重优点,还具有照相密度的线性响应、很高的信息存贮能力、巨大的动态范围:从远紫外直到近红外光谱区的宽广波长响应范围和极低的固有背景等一系列优良特性.因此,对于天文学和  相似文献   

20.
通过在聚合物电池内部加入Ag半透明增反膜,构建光学谐振腔,实现了光线在Ag薄层和金属电极之间的多次反射.这样可增加活性层对光的吸收,提高量子效率,进而大幅度提高短路电流,优化电池性能.实验中使用具有较低能带结构和宽吸收光谱的新型聚合物PCDTBT作为电子给体材料和PC71BM作为电子受体材料,通过控制薄膜生长过程和优化膜层厚度使转化效率达到5.08%.在此基础上,加入Ag作为半透明增反层,促使光线在Ag薄层和金属电极之间往复反射传输,大幅提高量子效率和短路电流.通过改变Ag薄层的厚度获得最大的短路电流密度和光电转换效率,实验得出当Ag厚度为8nm时,短路电流达到最大15.0mA/cm2,光电转换效率达到6.03%,从而达到了半透明增反层大幅提高电池性能的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号