首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
修枝机齿轮箱振动特性仿真分析   总被引:1,自引:1,他引:0  
针对修枝机齿轮箱在运行过程中出现的振动和异响问题,基于多体动力学理论,利用动力学 Adams软件建立齿轮箱动力学模型,结合傅里叶变换理论计算齿轮箱齿轮啮合动态力。建立齿轮箱有限元模型,完成齿轮箱约束模态分析。根据数据处理后的轴承处频域激励载荷,利用有限元软件Ansys Workbench计算齿轮箱体表面振动的动态响应。仿真结果和试验结果表明,齿轮箱的振动噪声在齿轮箱固有频率与齿轮啮合激励频率接近时达到最大值,为今后齿轮箱体辐射噪声分析以及结构优化设计提供了依据。  相似文献   

2.
船用齿轮箱多体动力学仿真及声振耦合分析   总被引:1,自引:0,他引:1  
基于多体系统动力学理论,综合考虑齿轮副时变啮合刚度、齿侧间隙、轴承支撑刚度等内部激励以及螺旋桨外部激励,建立了含传动系统及结构系统的船用齿轮装置多刚体系统动力学模型,计算了齿轮副动态啮合力及轴承支反力;对齿轮箱及支座进行柔性化处理,形成多柔体系统动力学模型,采用模态叠加法计算了箱体表面的动态响应.而后以多体动力学分析所得的轴承支反力频域历程为边界条件,建立了箱体声振强耦合分析模型,预估了齿轮箱表面声压及外声场辐射噪声.结果表明,齿轮副动态啮合力、轴承支反力以及箱体动态响应频域曲线的峰值均出现在齿轮副的啮合频率及其倍频处;仿真所得的箱体振动加速度及外声场辐射噪声与齿轮箱振动噪声试验台架实测结果吻合良好.  相似文献   

3.
应用自主开发的齿轮三维动力接触有限元分析程序计算了齿轮啮合时变刚度激励、误差激励和啮合冲击激励,用I-DEAS软件建立了同轴双输出行星齿轮减速器有限元模型,并对减速器的固有特性及内部动态激励下的动态响应和结构噪声进行了仿真分析.计算表明不会出现齿轮箱固有频率与传动轴转频或齿轮啮合频率合拍的现象,结构噪声的最大值均出现在齿轮啮合频率附近.  相似文献   

4.
以某3 MW风电齿轮箱为研究对象,通过导入壳体、齿圈、转架有限元凝聚刚度矩阵,建立基于MASTA的多柔体动力学模型,分析发现箱体在三级齿轮啮合频率附近有最高的动能分布,齿轮箱在高速级齿轮第一阶啮合频率激励下有最大的振动响应,且计算结果和试验测试结果基本符合。该结果可对风电齿轮箱设计阶段进行振动风险规避提供一定计算参考。  相似文献   

5.
大型船用齿轮箱传动系统的动态耦合特性   总被引:1,自引:0,他引:1  
考虑输入和输出端横向振动与系统扭转振动的耦合作用,建立大型船用齿轮箱三级齿轮传动系统横扭耦合动力学分析模型,利用基于能量的Lagrance法建立传动系统耦合动力学方程。采用Matlab软件计算了在时变啮合刚度和误差激励下的某大型船用齿轮传动系统固有特性和动态响应分析,得出系统动态良好,不存在共振现象,在工作负载下系统处于概周期振动的结论。  相似文献   

6.
基于啮合特性的人字齿轮动力学建模与分析   总被引:1,自引:0,他引:1  
利用人字齿轮啮合特性的分析结果,准确计算人字齿轮轮齿时变啮合刚度激励和误差激励。根据齿轮啮合冲击模型,计算人字齿轮啮入冲击激励。根据人字齿轮的均载传动特性,综合考虑上述3种激励,利用集中参数理论建立人字齿轮12自由度弯曲—扭转—轴向变形耦合的三维空间动力学模型。应用牛顿第二定律,建立系统的振动方程,对方程进行消除刚体位移和量纲归一化处理。采用变步长四阶龙格库塔法(Runge-Kutta)求解,得到系统的振动响应和动态特性。结果表明:人字齿轮动力学模型的建立、求解和分析为其动态设计奠定了基础。  相似文献   

7.
风电增速齿轮箱动力学性能优化方法   总被引:2,自引:2,他引:0  
建立增速齿轮箱动力学分析有限元模型,利用Lanczos法求得齿轮系统的振动模态;以齿轮副时变啮合刚度激励、齿面综合误差激励和轮齿啮合冲击激励为内部作用激励,采用直接积分法求得箱体表面节点的动态响应。选取箱体上12个主要结构参数作为动力学性能优化的设计变量,齿轮箱体积为状态变量,以齿轮箱表面振动加速度的均方根值最小为动力学性能优化的目标函数,利用零阶与一阶优化算法求得最优设计变量。结果表明:优化前后箱体均不产生共振,且满足静力学条件;优化后目标函数减小37.5%,箱体各计算点的振动响应均有较大幅度的减小,最大减小量为54%。  相似文献   

8.
采用弹簧单元模拟轮齿啮合刚度,杆单元模拟箱体间的联结螺栓,弹簧阻尼单元模拟滑动轴承和滚动轴承,建立由齿轮、传动轴、轴承和箱体等组成的GWC6066船用齿轮箱动态有限元分析模型及声学边界元模型;分析了齿轮箱在内部动态激励下的动态响应,预估了齿轮箱的振动烈度、结构噪声及空气噪声,并对齿轮箱进行实验模态分析及振动噪声测试,与仿真结果对比分析,二者吻合良好。  相似文献   

9.
风电齿轮箱传动系统的动力学建模   总被引:1,自引:0,他引:1  
由于风速的随机性特点,使得风电齿轮箱长期处于较为复杂的变载荷作用下而产生振动,这些振动将会引起齿轮箱内部结构的损坏.为了更好地对齿轮箱进行动力学分析,将风电齿轮箱传动系统分解为三级齿轮传动,采用集中质量法,在直齿轮、斜齿轮和行星齿轮动力学模型的基础上,建立了整个齿轮箱传动系统的动力学模型;并在考虑齿轮啮合刚度、啮合阻尼、啮合误差、偏心量、弯扭耦合、自身重力以及支撑轴承等因素的共同作用下,利用拉格朗日方程推导了整个传动系统的动力学方程.为今后分析兆瓦级风电齿轮箱传动系统的固有特性、动态响应等动力学特性奠定了一定的基础.  相似文献   

10.
针对一级行星两级平行轴风电齿轮传动系统,综合考虑齿轮时变啮合刚度、啮合阻尼、传递误差等因素,建立31个自由度的弯扭轴耦合集中参数动力学模型,采用变步长Runge-Kutta法对系统动力学微分方程进行求解,得出齿轮传动系统各级传动误差;借助软件建立风电齿轮箱刚柔耦合动力学模型,并导入传动误差,采用模态叠加法求得齿轮箱轴承支反力,并将其作为声振耦合模型的边界条件,采用声学有限元法对风电齿轮箱进行振动噪声预估,并与试验结果对比分析,两者吻合良好。  相似文献   

11.
本文以某齿轮箱为研究对象,应用MASTA软件根据动力学理论完成对齿轮传动系统的建模,得到轴承处动态力并以此作为之后箱体的输入载荷,综合运用Pro/E、Hypermesh与Ansys软件建立齿轮箱箱体有限元模型,计算齿轮箱模态并调入Virtual Lab软件中基于模态叠加法最终得到固定转速下齿轮箱各点振动响应,经验证,与振动试验测量值相吻合。本文通过多软件联合计算仿真成功求解齿轮箱箱体振动响应,有助于预测整体系统振动噪声,为齿轮箱振动控制提供了理论依据。  相似文献   

12.
为研究修形前后多级行星齿轮箱在复杂激励作用下的振动噪声,以海洋平台升降齿轮箱为对象,建立了耦合4级行星轮系、轴承和箱体的齿轮箱有限元模型,分析了齿轮箱的振动模态;采用静动力接触有限元法求解了修形前后齿轮副的内部动态激励,在此基础上提出了考虑轮齿修形的齿轮箱振动噪声预估方法,利用模态叠加法分别计算了轮齿修形前后齿轮箱的振动响应,并采用声学边界元法对齿轮箱的辐射噪声进行预估。结果表明:修形后4级行星齿轮箱的振动噪声明显降低,对比振动噪声仿真与实测结果,两者吻合良好。  相似文献   

13.
针对齿轮箱在实际运行过程中存在的轴系变形问题,提出了一种二级齿轮减速器在多源时变激励作用下振动噪声的计算方法。综合考虑齿轮、轴承时变刚度以及误差激励的影响,并引入二级齿轮相位关系,采用有限元法建立了计入轴柔性的二级直齿轮-轴-轴承系统耦合动力学模型。通过Newmark时域积分法求解系统动力学方程,得到各轴承动载荷,并分析了传动系统的固有特性及轴的静变形特征。采用有限元法对齿轮箱进行模态分析,提取箱体各阶固有频率与振型。以轴承频域动载荷为齿轮箱激励,利用模态叠加法计算得到齿轮箱的振动响应,并采用声学边界元法对齿轮箱的辐射噪声进行了计算。分析了轴柔性和转速对轴承动载荷与箱体辐射噪声的影响。仿真结果表明:计入轴柔性后,轴承动载荷波动幅值降低,激励频率成分也随之减少;在低频段200~900Hz与高频段1 800Hz附近,箱体的主要共振模式发生改变,顶部场点噪声有所降低;随着转速的升高,激起了传动系统轴系弯曲振动模式,并引起传动系统振动幅值增大,且齿轮箱顶部场点噪声明显大于两侧场点噪声。研究结果可为减速器的减振降噪设计提供理论参考。  相似文献   

14.
为了设计高性能同轴双输出行星齿轮减速器,建立了减速器装配模型及运动学、动力学分析模型,应用齿轮三维动力接触有限元分析程序计算了齿轮啮合时变刚度激励、误差激励和啮合冲击激励,对减速器进行了运动仿真分析、模态分析和动态响应分析,得出各构件的转速曲线、减速器的固有频率以及箱体表面的振动位移、振动速度和振动加速度曲线;仿真结果表明了减速器满足传动要求,在正常工作情况下不会出现减速器固有频率与传动轴转频或齿轮啮合频率合拍的现象。  相似文献   

15.
风电机组叶轮承受风载产生的推力和弯矩等非扭矩载荷传递到齿轮箱内部,会引起关键部件振动加剧、动载增大,将加速齿轮、轴承等部件的过早失效.本文针对某5 MW风电齿轮传动系统,考虑行星架和太阳轮轴的柔性,计算了各对齿轮间的啮合刚度和阻尼以及轴承的支承刚度,采用ADAMS软件建立其刚柔耦合动力学模型,分析了非扭转载荷对关键部件振动和动载荷特性的影响,结合理论分析与对比验证,掌握了非扭矩载荷引起低、中和高速级齿轮振动位移和动态啮合力以及轴承动载增大的变化规律,将为齿轮传动系统动态性能评估及其可靠性优化设计提供重要的理论依据.  相似文献   

16.
风电增速箱结合部刚度分析及振动噪声预估   总被引:3,自引:3,他引:0  
为了研究风电增速箱的振动特性和辐射噪声,基于轴承支承刚度及齿轮副啮合刚度分析,建立了风电增速箱轴系扭转振动模型,运用Matlab求解振动微分方程,得出轴系扭振频率及对应振型;综合考虑刚度激励、误差激励及冲击激励,建立了风电增速箱动力学有限元模型,仿真得出增速箱的动态响应。以箱体表面节点振动位移为边界条件,建立了增速箱声学边界元模型,采用直接边界元法求解得到箱体表面声压及场点的辐射噪声。结果表明,风电增速箱扭振频率与激励频率及其倍频相差较大,不会出现共振现象;增速箱结构噪声和辐射噪声的峰值主要出现在高速级齿轮啮合频率的二倍频附近。  相似文献   

17.
基于多体系统动力学理论,综合考虑齿轮副时变啮合刚度、齿侧间隙、轴承刚度及阻尼、转速连续变化的影响,建立了变速器传动系统动力学模型,计算得到齿轮动态啮合力和壳体各轴承座处的动态支反力.然后对变速器壳体柔性化处理,获得变速器壳体固有频率及振型.最后以各轴承座处的动态支反力为激励,采用模态叠加法计算壳体结构的动态响应,获得了壳体表面的振动信息.仿真结果表明:在扭矩一定时,变速器壳体表面振动加速度幅值随转速升高呈增大趋势,与实验台架实测结果吻合良好,并且误差在10%以内.  相似文献   

18.
为研究啮合刚度和阻尼对人字齿轮振动特性的影响,建立了人字齿轮弯-扭-轴耦合动力学模型,推导出相应的运动微分方程,利用Matlab求解获得了系统的动态响应。结果表明,齿轮啮合线上的振动加速度和轴向振动加速度大于齿轮横向振动加速度,是引起齿轮振动和噪声的主要原因。啮合刚度对横向、轴向和啮合线方向振动均有影响,刚度波动量主要影响横向和啮合线方向的振动,啮合阻尼主要影响啮合线方向上的振动。故增大啮合刚度、减小刚度波动量或增大阻尼可有效降低人字齿轮传动的振动和噪声。  相似文献   

19.
齿轮传动装置阻尼减振降噪试验研究   总被引:1,自引:1,他引:0  
通过在高速齿轮箱减振降噪试验台上进行振动、噪声测试对比试验,测试在齿轮噪声中啮合冲击频率及其倍频声和固有频率声产生共振时,分析齿轮箱系统在各种工况情况下增加阻尼前后对系统的减振降噪的作用,可以发现粘贴阻尼材料能够在一定程度上起到良好的减振降噪效果.重点分析齿轮箱在外部粘贴阻尼材料和灌注阻尼材料这两种附加结构对减低振动与噪声具有良好的抑制作用.证明了齿轮箱在附加阻尼后,提高了齿轮传动装置的阻尼特性,符合阻尼减振降噪的理论研究.根据齿轮箱中齿轮啮合冲击是系统的主要激励振动,通过测试分析,采用合金阻尼环附加结构,可得到更佳的减振降噪效果.  相似文献   

20.
面齿轮副在航空领域和汽车领域具有重要的应用前景。扭转振动问题是面齿轮副的核心问题之一。该文研究了面齿轮副扭转振动的建模与分析方法。建立了单输入单输出面齿轮副扭转振动模型,该模型包含非对称时变啮合刚度、间隙非线性、静态传动误差等因素。基于加载接触分析,提出面齿轮副扭转啮合刚度的计算方法,并对某型面齿轮副的非对称时变啮合刚度进行了计算。通过与Abaqus有限元动力学计算结果进行对比,验证了扭转振动模型的有效性。基于所建立的模型,分析了面齿轮副设计状态时的动态特性,研究了啮合刚度、啮合间隙、静态传动误差、扭矩波动等因素对面齿轮副动态特性的影响,以及面齿轮副蕴含的非线性动力学响应。结果表明:所提出的面齿轮副扭转振动建模方法是有效的,所建立的模型能够用于研究面齿轮副的啮合特性、动态特性,指导以及校核面齿轮副的设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号